arXiv:1906.04576v1 [cs.GR] 11 Jun 2019

Multi-Resolution Rendering for Computationally Expensive
Lighting Effects
Timo Ropinski

Ulm University
timo.ropinski@uni-ulm.de

Sebastian Maisch

Ulm University
sebastian.maisch@uni-ulm.de

Simon Besenthal

Ulm University
simon.besenthal@uni-ulm.de

Abstract

Many lighting methods used in computer graphics such as indirect illumination can have very high computational
costs and need to be approximated for real-time applications. These costs can be reduced by means of upsam-
pling techniques which tend to introduce artifacts and affect the visual quality of the rendered image. This paper
suggests a versatile approach for accelerating the rendering of screen space methods while maintaining the visual
quality. This is achieved by exploiting the low frequency nature of many of these illumination methods and the
geometrical continuity of the scene. First the screen space is dynamically divided into separate sub-images, then
the illumination is rendered for each sub-image in an adequate resolution and finally the sub-images are put to-
gether in order to compose the final image. Therefore we identify edges in the scene and generate masks precisely
specifying which part of the image is included in which sub-image. The masks therefore determine which part
of the image is rendered in which resolution. A step wise upsampling and merging process then allows optically
soft transitions between the different resolution levels. For this paper, the introduced multi-resolution rendering
method was implemented and tested on three commonly used lighting methods. These are screen space ambient

occlusion, soft shadow mapping and screen space global illumination.

Keywords

Real-Time Rendering, Multi-resolution

1 INTRODUCTION

As a subarea of computer science, real-time computer
graphics has developed continuously since the mid-
dle of the last century and is of great importance to-
day. With a variety of applications, including medicine
or computer-aided design (CAD), real-time computer
graphics is nowadays indispensable in many areas of
life and is thus a relevant factor in research as well
as in business. To render a realistic image many op-
tical and physical phenomena such as camera lenses,
light transport, or micro-surface structure must be taken
into account. All of these phenomena need to be cal-
culated at pixel level but might rely on information of
the surrounding scene to create the effect. Therefore,
the number of pixels to be rendered, especially with
more complex illumination, is crucial to the necessary
computing power and thus to the performance of an
application. While the increase in computing power
of modern graphics hardware allows for more compli-
cated algorithms, the demand for photo-realistic global
illumination effects and high output resolutions in real-

ermission to make digital or hard copies of all or part o
this work for personal or classroom use is granted withou
fee provided that copies are not made or distributed for profif]
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires

rior specific permission and/or a fee.

time graphics can not be met by current hardware suffi-
ciently.

In order to reduce the computational effort upsampling
is often used. This technique renders individual effects,
or sometimes the full image, in a lower resolution. Sub-
sequently, the generated images are scaled back up to
the full resolution by interpolation. Ultimately, fewer
pixels must be calculated and stored, which reduces
the computational effort and also the required storage
space. Upsampling is particularly common in soft, con-
tinuous post-processing effects such as bloom filters or
blur, in which quality losses are virtually invisible, de-
pending on the scaling factor. If, on the other hand,
you render effects with more concrete structures such
as shadows or reflections in a lower resolution and then
scale them up, hard edges are displayed washed out and
aliasing becomes visible. In addition, there is a risk of
under-sampling, which can cause visual artifacts affect-
ing the image quality, especially in animated scenes or
during camera movements. Rendering such effects or
the entire image by upsampling is therefore usually not
always useful, however, two interesting observations
can be made: Although such effects may generally have
more concrete structures such as hard edges, these high-
frequency details are firstly not necessarily evenly dis-
tributed in the image space, and secondly, they are of-
ten only marginally present in relation to the total area.
For example, considering naive shadow mapping with
a single light source, depending on the complexity of
the scene, a rendered image may contain large areas

that are either completely shaded or fully illuminated.
Nevertheless, the necessary operations to determine the
brightness of these areas are performed for each indi-
vidual pixel. For naive shadow mapping, this is cer-
tainly not important, but if one considers computation-
ally more complex effects such as ambient occlusion or
indirect illumination, the performance could be drasti-
cally increased by an intelligent subsampling of certain
image areas.

The technique developed in this work exploits the often
existing optical continuity of a scene in order to real-
ize computationally intensive lighting effects more ef-
ficiently. For this purpose, the image space is first di-
vided into multiple disjoint partial images, so that areas
which contain edges or are in their immediate vicinity
are separated from areas without edges or with a greater
distance to them. Each partial image can be rendered
individually with the illumination effects to be realized
in suitable resolutions. In principle, a higher resolu-
tion is required to correctly create the effect in areas
with a higher detail density. However, areas that do not
include edges and thus have a lower density of detail
can be rendered in lower resolution. The partial images
are then reassembled to the original image. In the best
case, this image should not differ visually from a full-
resolution rendered image. Of particular importance for
visual quality and performance is the way in which the
individual steps of the technology work. For each dif-
ferent step approaches are presented and explained in
this paper.

2 RELATED WORK

In this section we present and explain the techniques
and approaches relevant to this work. They follow sim-
ilar conceptual principles and can be considered as a
starting point for the technique developed here. We also
highlight the differences to these approaches.

2.1 Upsampling

Upsampling is a technique commonly used in low-
frequency visual effects in real-time computer graphics.
Examples of effects that are often realized are Bloom or
Glare filters [1]] and Depth of Field [2]. The blur for the
respective effect is not rendered in the full resolution of
the application, but in an often much lower resolution.
Subsequently, the result is scaled back to the full screen
size by means of bilinear interpolation. This can greatly
increase the performance at the same optical quality.

2.2 Adaptive Multi-Resolution

There are several approaches that split the computa-
tion of illumination effects into multiple resolutions to
separate the rendering of low frequency and higher fre-
quency components of these effects. Examples are im-
plementations for indirect light transport [3] and Screen
Space Ambient Occlusion [4]], which achieve better

performance with optically good results. In both ap-
proaches, multiple mipmap stages of the G-buffer are
used to render the lighting effect to be realized in var-
ious resolutions. Subsequently, an upsampling is per-
formed by means of bilateral filters and the differ-
ent levels are combined. The multi-resolution render-
ing technique developed in this work makes use of
the fundamental principle of separating high and low-
frequency components of the illumination, but divides
the image into several partial images on the basis of
these different proportions. An area of the image is not
rendered in all resolutions, but in the best case only in
one. This makes it possible to drastically reduce the cal-
culations for higher-frequency components in the im-
age areas in which ultimately no high-frequency com-
ponents occur exactly.

Nichols and Wyman [5] describe a real-time technique
for rendering indirect illumination using multi-
resolution splatting. They use min-max mipmaps
to find the discontinuities in the geometry. Using
these discontinuities, the image space is hierarchically
divided into smaller squares, so that areas with higher-
frequency components obtain a finer resolution. After
the image is completely split into such ‘splats’ of an
appropriate size, the indirect illumination is rendered
in all resolutions and the layers are then combined by
upsampling to produce the final image. Our technique
differs from the algorithm presented by Nichols and
Wyman among other things in the method used to
decide which resolution to render in. We can apply
more flexible filters depending on the situation, while
their approach using min-max mipmaps can only find
geometric discontinuities. We also use a different
approach to combine the final images that prevents
visible artifacts. Finally, our technique is not only
specialized for indirect illumination using Reflective
Shadow Maps, but can also be applied and optimized
for various lighting effects due to its high flexibility.

lain Cantlay [6]] describes a technique for rendering
lower resolution particles offscreen and combining the
result with high resolution renderings of other geome-
try. In contrast to our approach, this technique can only
be applied, if distinct parts of the geometry (in this case
particles) are to be rendered in a fixed lower resolution
while our technique is more flexible working on pixels.

Guennebaud et al. [7]] use variable resolutions for soft
shadow mapping in screen space. Again our approach
is more flexible and can be applied to a multitude of
screen space effects.

2.3 Variable Rate Shading

He et al. [8] propose an extension of the graphics
pipeline to natively support adaptive sampling tech-
niques. Nvidia’s Maxwell and Pascal architectures have
already implemented graphics hardware technologies
that could speed up the rendering of an image through
the use of different resolutions. Multi-Resolution

Shading [9] and Lens Matched Shading [10] can be
applied in virtual reality applications to adapt the
resolution of individual image areas to the optical
properties of the physical lens that is part of the display.
For more general uses Variable Rate Shading [11]]
(VRS) was introduced as part of the Nvidia Turing
architecture. With this technique, the image can be
divided into much finer regions, which can be rendered
independently in appropriate resolutions. The regions
are made up of squares with a edge length of sixteen
pixels. Possible applications include ‘Content Adaptive
Shading’ (as for example presented by Vaidyanathan et
al. [12]), ‘Motion Adaptive Shading’ (as for example
presented by Vaidyanathan et al. [13]), and ‘Foveated
Rendering’ (as presented by Guenter et al. [[14])). In this
case, the sampling rate of the image areas is selected
adequately depending on the detail density, movement,
or focus of the viewer.

The multi-resolution rendering technique developed in
this work allows for an even finer and more flexible di-
vision of the image, since image areas do not neces-
sarily have to consist of square tiles, but can have any
desired shape. This means that a possibly even lower
part of the image must be rendered in full resolution,
and the performance can be further increased. Apart
from that, in contrast to VRS, our technique allows for
any number of levels and even lower sampling rates.
Our technique is also not dependent on current graphics
hardware and can be implemented for widely available
systems. In our implementation we focus on the den-
sity of details in a scene (Content Adaptive Shading) to
decide for the resolution to render in but we can extend
our technique by using different edge detection filters
or even masks that describe the geometry of lenses in
virtual reality.

2.4 Global Illumination Effects

For the exemplary implementation of our technique we
use three illumination effects commonly used in mod-
ern computer graphics.

Screen Space Ambient Occlusion (SSAO) is a real-time
approximation of the occlusion of ambient light by lo-
cal geometry. The technique was first presented by Mit-
tring [[15] and further developed and improved (e.g. by
Bavoil et al. [16]).

Shadow Mapping is an algorithm presented by
Williams [17]] that allows for a fast calculation of
shadow rays using a depth buffer. Artifacts introduced
by the resolution of the depth buffer can be reduced
by percentage closer filtering, introduced by Reeves et
al. [18] that also softens the shadows edges. A plau-
sible penumbra can also be realized as described by
Fernando [19]]. The shadow map is not only sampled at
a single position but at multiple neighboring locations.

Screen Space Global Illumination as, for example, de-
scribed by Ritschel et al. [20] generalizes SSAO to not

Figure 1:
resolution rendering technique, the edges are colored
for better visualization: the red edges were determined
by the differentiation of the normals, the green ones by
the depth values and the blue ones by the shadows, nor-
mal edges and depth edges are often determined at the
same point in the image space (yellow edges).

A possible edge image for the multi-

only dim ambient illumination but also add indirect illu-
mination from other surfaces visible on the screen. The
light transport between chosen samples close to a pixel
is calculated inducing information from the G-Buffer.

3 MULTI-RESOLUTION RENDERING

Our presented multi-resolution rendering technique can
be subdivided into three basic steps. In the first step, we
create a mask in screen space, based on which the image
to be rendered is divided into disjoint or complementary
sub-images. In the second step, the lighting method to
be implemented is rendered for each sub-image in its
adequate resolution. Finally the sub-images are com-
bined to create the result image. The conceptual ap-
proaches of these steps will be described in more detail
below. A visual overview of the algorithms workflow
will be given in the supplementary material.

3.1 Mask Creation

The masks are used to divide an image into individual
sub-images. While masks can be acquired in multiple
ways and even combined using the minimum or maxi-
mum (depending on the application) an obvious choice
is to use them to separate the higher-frequency image
parts from the low-frequency ones. It is often suffi-
cient to use the geometry edges of the scene in screen
space to achieve this. These can be found through the
information available in the G-Buffer by numerically
differentiating depth values and normals for each pixel.
For the normal, the first derivative in each of the two
dimensions is sufficient, whereas for the depth values,
the second derivative gives more reliable results. The
discontinuities found reproduce the geometric edges of
the scene and can be used to split the image. For screen
space ambient occlusion and screen space global illu-
mination, the geometric edges are already sufficient but
depending on the illumination effect to be realized, ad-
ditional information may be required. In case of soft

i SSAO SSM SSGI

Giz ‘ Wi 61'2 ‘ Wi O-i2 ‘ Wi
1 [0.924 [100 [[0.924 | 1000 [[0.924 [1000
2 || 1.848 | 50 1.848 | 1000 - -
3| 3.696 | 20 3.696 | 1000 || 0.924 | 100
4 0 1 0 1 0 1

Table 1: Variances (Giz) and weights (w;) for each sub-
image (7) of all techniques we used. The variances are
used to blur the mask, while the weights are used to
combine the final image. For SSGI we did not use the
second sub-image at all.

shadow mapping for example, the shadow edges of the
scene are needed above all. To this purpose, when creat-
ing the mask using the previously created shadow map,
a fast shadow calculation (one sample per pixel) can
be implemented. We differentiate these values to find
discontinuities in the shading. To avoid artifacts at the
geometry edges, we also take them into account for the
mask when rendering the soft shadows. Fig. [T] shows
an edge image of a scene in which normals, depths, and
shadows are differentiated. As an alternative to the edge
images we use, min-max mipmaps can also be used
to decompose the image as explained by Nichols and
Wyman [3]].

After we created the final high-resolution mask we
downsample it to the resolutions we want our final sub-
images to be. We use blur filters with different vari-
ances (62) on the downsampled images to determine
the areas near the edges. The blurs variance gives the
developer control over the size of the area around the
edges and determines which areas around the edges are
rendered in which resolution. The variances we use can
be found in Tab. [Tl

A

Figure 2: Without accounting for overlap (left), ,,dead
pixels (black) occur at the edges of the sub-images
(red and blue), which are not contained in any of the
sub-images and thus are not rendered. When ensuring
an overlap (right), the intersection of the sub-images
(green) prevents this circumstance.

A simple way to separate the image into sub-images
is to divide them into complementary tiles. An ad-

vantage of this method is the disjoint decomposition,
whereby no area of the image has to be rendered mul-
tiple times. A drawback, however, is that the granu-
larity of the decomposition of the image is limited by
the lowest resolution of a sub-image. When naively us-
ing the granularity that is determined directly by the
resolution of each sub-image, we obtained undefined
spaces in the final image between two masked areas.
To avoid these we make sure areas of different resolu-
tions have an overlap as shown in Fig.[2] Therefore, we
do not separate the image into almost disjoint areas, but
always completely include the higher resolution levels
in the underlying ones. This means, in particular, that
the lowest resolution sub-image always renders the ef-
fect to be realized for the entire image. Losses in per-
formance due to the multiple rendering of some image
areas are extremely small, because the additional com-
putational effort arises mainly in the lower resolutions.
If the blur is optimally selected for the creation of the
masks, this approach lets us keep the areas of the higher
resolution levels extremely small, resulting in an overall
good performance. In addition, this decomposition ap-
proach later allows for a very simple re-composition of
the final image, because the masks together with fixed
weights can serve as an alpha channel for blending the
sub-images (see Section [3.3). Fig. 3] shows a possible
decomposition of an example scene in screen space.

Figure 3: Visualization of the decomposition of an im-
age into four sub-images by means of inclusive areas:
The sub-image of the full resolution contains all the red
areas, the sub-image of the half resolution all red and
green areas, the sub-image of the quarter resolution all
red, green and blue areas. The fourth sub-image renders
the entire image space at an eighth of the resolution.

3.2 Rendering the Sub-images

Throughout the rendering process we generate all sub-
images independently of each other in the chosen res-
olution. Shape and resolution of the sub-image are de-
fined by the masks determined in step one. Accord-
ingly, an image area of a sub-image is only rendered if
and only if the corresponding mask in this image area
permits it. Fig. [d] shows an example of rendering four
sub-images.

P‘\{
ot . |
Figure 4: Screen space ambient occlusion rendered in
four sub-images, no lighting is calculated for the black
areas. The individual sub-images render SSAO in full

(top left), half (top right), quarter (bottom left) and
eighth resolution (bottom right).

3.3 Blending the Sub-Images

As the final step of the technique we blend the indi-
vidually rendered sub-images in order to generate the
final image. All sub-images are upsampled to the full
resolution and combined. Using a simple bilinear in-
terpolation would lead to artifacts, as pixels containing
visual information can be interpolated with those that
contain no information.

A simple solution for this problem would be bilat-
eral interpolation as described by Tomasi and Man-
duchi [21]. When using this, the sub-images are grad-
ually scaled and merged without scattering missing in-
formation of a resolution level into the relevant pixels of
the image. To this purpose, a sub-image is always com-
bined with the sub-images already blended in one step.
This upsampling technique is also used by Nichols and
Wyman [5].

In our case we can use the decomposition masks to
calculate the final blending weights. Each sub-image,
starting at the lowest resolution, is blended with the next
higher resolution sub-image based on the alpha value
of each mask. The softness of the transitions between
the resolution levels can be determined flexibly using
weights. These weights are multiplied with the alpha
mask and define the final alpha value for blending.

4 IMPLEMENTATION

In our implementation we applied our multi-resolution
rendering technique to three illumination effects com-
monly found in modern real-time computer graphics.
These effects are SSAO, soft shadow mapping (SSM)
and screen space global illumination (SSGI). In this
section, we describe the implementation of our tech-
nique and specific adjustments for the illumination ef-
fects used. Our implementation relies solely on the
OpenGL 3.3 core profile and can as such run on widely
available hardware. According to our experiences dur-
ing the development stage, a decomposition in four sub-
images appears as the best compromise between image

quality and speed. The width of the sub-images is suc-
cessively halved, starting at full resolution width, and
are set to full, half, quarter, and eighth. For SSGI we
found that not using the halved sub-image did not re-
sult in worse image quality. This contributed to a fur-
ther performance enhancement.

4.1 Rendering of the Sub-Images

To render the sub-images, we use the previously gener-
ated masks to create a stencil buffer for each resolution
determining the areas. We check if the mask is greater
than zero and set the stencil value to one or zero ac-
cordingly. We thought about using different thresholds
for creating the stencil masks but for our purposes just
using zero provided the best results. For each resolu-
tion level used, we subsequently render each sub-image
using the stencil buffer to eliminate regions that we do
not want to render.

For SSAOQ, depending on the number of samples used,
we blur the resulting sub-images in order to reduce the
occurring variance of the effect, especially in the lower
resolutions. However, we needed to ensure not to trans-
port missing pixel information into the defined areas of
the respective sub-image. We achieved this, with a bi-
lateral blur filter.

4.2 Blending of the Sub-Images

Subsequently, the rendered sub-images are blended to
compose the final image. We use bilinear interpola-
tion to scale the sub-images to full size and then com-
bine them sequentially, starting at the lowest resolution
level. We carry out the final blending between two sub-
images by using the values of our masks (a;) multiplied
by a weight (w;) as a linear interpolation parameter. The
weights of our example cases can be found in Tab. [T}
We calculate the following for each pixel of the final
image. We define ¢; as that pixels color value in the
i-th sub-image, where ¢ is the full resolution image.
The composed image including the i-th sub-image as
its highest resolution is called ¢}. The fourth sub-image
has the lowest resolution, covers the entire image space
and is defined for each pixel. We use its value as the
initial value ¢, = c4. All other ¢} are calculated succes-
sively using the alpha values a; from the corresponding
masks and the weights w; by:

¢ = c¢;-min(aw;, 1) +cj_; - (1 —min(aw;, 1)) (1)

The last computed value ¢ describes the pixel value of
the final composite image.

S EVALUATION

For a basic evaluation we applied our multi-resolution
rendering technique to the three illumination effects
mentioned (SSAO, SSM and SSGI). We used three test

200 —
lossaollossmOSSGI

Speedup [%]
S &
S e
I I
|
|

D
()

o Mot

16/100/ 32/144/ 64/196/ 128/256/ 256/324/
24 80 288 1088 4224

Samples (SSAO/SSM/SSGI)

Figure 5: Average speedup in percent by using our
multi resolution technique in 4K (3840x2160 Pixels).
We show the speedup for our three tested techniques
using different numbers of samples for each of them.

scenes “Office” (20,189 triangles), “Hall” (183,333 tri-
angles), and “Breakfast Room” (a slightly modified ver-
sion of the one provided by Morgan McGuire [22] with
269,565 triangles) with eight camera configurations for
speed and visual comparison. For Soft Shadow Map-
ping and Screen Space Global Illumination, a modified
version of the second scene with 255,432 triangles was
used, because it works better with the given directional
light sources. For each perspective, the rendering speed
was measured using our technique and compared to the
speed measured for naive rendering in full resolution.
In addition, comparison images of the test scenes are
shown and their differences measured and visualized.
All tests were performed on a Nvidia Geforce GTX
1080.

5.1 Rendering Speed

For testing the speedup of our technique we used
3840 x 2160 as a base resolution. We tested each
technique with a different number of samples. The
average results for 24 different configurations (scene
and camera) are listed in Fig.[5] Despite the additional
rendering steps needed, our technique outperforms
naive rendering in all cases. For a higher number of
samples our technique will perform better, since more
processing on the GPU can be skipped due to lower
resolution rendering.

We also tested our technique for lower resolutions. The
Results were not as good as the ones reported for 4K.
Nevertheless with the exception of SSM with 196 Sam-
ples we achieved clear positive speedups for all illumi-
nation techniques even in 720p. Starting from 1440p,
all illumination techniques provided positive speedups.
Our results for SSM can be explained by the fact that
the technique is relatively simple while the mask gen-
eration still produces observable overhead. Compared
to this overhead, the reduction in GPU computations is

150
lossaollonssmlossGl M
—100 |- R
IS
o
=
el
8 50 =
o
’ H
) DDU A Hed HAEN
1280 x 1920 x 2560 x 3840 x
720 1080 1440 2160
Resolution

Figure 6: Average speedup in percent of our multi
resolution technique at different resolutions. We used
fixed numbers of samples for all techniques: 64 sam-
ples for SSAO, 196 samples for SSM, and 228 samples
for SSGI.

relatively low. For lower resolutions the overhead of
generating the mask to divide the image and the cost
of the additional rendering passes for multiple resolu-
tions dominate over the positive effect of our technique.
Fig.[6] shows these results.

5.2 Visual Comparison

While our technique tries to prevent producing images
that differ from renderings created with naive full res-
olution rendering, we could not prevent all visual arti-
facts. As can be seen in Fig. [7]to] these errors occur
at the borders of our masks and are mostly due to the
Gaussian blur we need to apply to the images to reduce

Figure 7: The “Hall” dataset using SSAO and 64 sam-
ples. The top image shows our multi resolution tech-
nique while in the lower left corner the reference image
is shown. In the lower right corner is an enhanced dif-
ference image between those two.

Figure 8: The “Breakfast Room” dataset using SSM
and 196 samples. The top image shows our multi res-
olution technique while in the lower corner the refer-
ence image is shown. In the lower right corner is an
enhanced difference image between those two.

discontinuities at these edges. The blur kernel is very
narrow so it is hard to detect the errors when just com-
paring the images directly but is visible in the difference
images provided.

Fig.[7]shows the results for SSAO using 64 samples. We
chose this number of samples as we think it is a reason-
able choice for real applications and a good compro-
mise between speed and image quality. As this image
is very bright the differences in the difference image are
also more prominent as with the other technique.

Fig. 8] shows the results for SSM using 196 samples.
For this lighting effect we can use masks that do not de-
pend directly on the screen space geometry for our tech-
nique. The occurring errors are relatively low compared
to the other techniques due to the parts of the scene in
shadow that are lit with a constant ambient illumination.

Results of the SSGI technique we implemented are
shown in Fig. 9] For a visually plausible global illu-
mination effect in screen space we needed a lot of sam-
ples so we chose to present the results for 4224 samples.
While our results are still convincing some small arti-
facts can be seen in the corners of the right rack. While
these present visible differences to the original image
the effects are very minor.

Besides the visual results we provide an overview over
all errors in the graphs in Fig.[T0] These numbers do not
only include the presented images but include images
from all three scenes with eight camera configurations
each. These numbers support our claim that the errors
introduced by our technique are very low.

5.3 Discussion

We presented the performance and visual quality of our
method and have two general findings. As a general

Figure 9: The “Office” scene using SSGI and 4224
samples. The top image shows our multi resolution
technique while in the lower corner the reference im-
age is shown. In the lower right corner is an enhanced
difference image between those two. The image only
shows the SSGI effect without direct illumination to
better show the differences caused by our technique.

rule, it was observed that illumination techniques that
are more computationally demanding can benefit more
from our technique than less demanding ones. This is
because of a constant overhead due to mask generation
and multiple rendering passes. This overhead becomes
dominant for techniques that are less computationally
demanding. The second finding is the fact that our
technique excels especially in higher resolutions for the
same reason.

5 1072
lossaolossmloSSGI
< 1.5~ B
= _
é —
< 1
%
>
& 0.5
0
1280 x 1920 x 2560 x 3840 x
720 1080 1440 2160
Resolution

Figure 10: The absolute root mean squared (RMS) er-
rors between result images of our multi resolution tech-
nique and images naively rendered with high resolution.
We used 64 samples for the SSAO images, 196 samples
for SSM and 288 samples for the SSGI images. Val-
ues in the compared images ranged from O to 1 so the
resulting errors can be considered low.

A minor finding is that masks which are more compli-
cated to generate than by simply using the G-Buffer
also cause a greater overhead. This makes the use of
these masks only feasible for the highest resolutions
or techniques that are more computationally demand-
ing than the soft shadow mapping presented here.

6 CONCLUSION & FUTURE WORK

We presented a technique for multi resolution render-
ing that can be implemented on widely available graph-
ics hardware. Our technique can improve the render-
ing speed of screen space algorithms drastically (espe-
cially for high resolutions) as we have shown for three
cases. While the technique presented here is only used
for ‘Content Adaptive Shading’ we can trivially extend
it to ‘Foveated Rendering’ by modulating the mask we
use by an importance mask provided by eye trackers.
Including ‘Motion Adaptive Shading’ is also possible
by using information of pixel motion in the mask gen-
eration process.

To further improve our technique we think that the mask
generation process should be modified. For determin-
ing the geometry edges, we use normals and depth val-
ues from the G-Buffer in screen space. In practice how-
ever, non-smooth, modified normals are often used to
calculate the illumination. For smooth shading, pixel
normals are calculated by the linear interpolation of
vertex normals, but in real applications bumpmaps or
normal maps are used to modify the normals. In this
case, the edge filter could potentially find many more
edges, which can result in dramatically increased com-
putational effort and significantly lower efficiency. Pos-
sible solutions to these problems would be the exclu-
sive use of unmodified normals or an alternative de-
termination of the edges using the pixel locations in
world space. Another problem may arise with certain
effects, including, for example, reflections or caustics,
since their edges can not be calculated with the informa-
tion contained in the G-buffer. Also in this case, image
areas with higher-frequency components could be ren-
dered in too low a resolution. For such lighting effects,
further development of the progressive decomposition
of the image would certainly be beneficial. To prevent
sub-sampling for some effects, sub-images could also
be realized by just using a lower number of samples in
full resolution instead of rendering the effect in a lower
resolution.

Another interesting application for the multi resolu-
tion rendering technique would be using ray tracing
for physically correct illumination. In particular, dif-
fuse indirect illumination can only be achieved by rel-
atively high computational effort and can barely be re-
alized in real-time on current graphics hardware. Using
the multi-resolution approach, the performance could
be increased drastically.

REFERENCES

(1]

(2]

[3]

(4]

[3]

(6]

(71

(8]

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

G. James, GPU Gems.
Real-Time Glow.

T. Scheuermann et al., “Advanced Depth of Field,” GDC 2004,
vol. 8, 2004.

C. Soler, O. Hoel, and F. Rochet, “A Deferred Shading Pipeline
for Real-Time Indirect Illumination,” in ACM SIGGRAPH 2010
Talks. ACM, 2010, p. 18.

T.-D. Hoang and K.-L. Low, “Multi-Resolution Screen-Space
Ambient Occlusion,” in Proceedings of the 17th ACM Sympo-
sium on Virtual Reality Software and Technology. ACM, 2010,
pp. 101-102.

G. Nichols and C. Wyman, “Interactive Indirect Illumination
Using Adaptive Multiresolution Splatting,” IEEE Transactions
on Visualization and Computer Graphics, vol. 16, no. 5, pp.
729-741, 2010.

I. Cantlay, GPU Gems 3. Addison-Wesley Professional, 2007,
ch. High-Speed, Off-Screen Particles.

G. Guennebaud, L. Barthe, and M. Paulin, “High-Quality Adap-
tive Soft Shadow Mapping,” in Computer graphics forum,
vol. 26, no. 3. Wiley Online Library, 2007, pp. 525-533.

Y. He, Y. Gu, and K. Fatahalian, “Extending the graph-
ics pipeline with adaptive, multi-rate shading,” ACM Trans.
Graph., vol. 33, no. 4, pp. 142:1-142:12, Jul. 2014.

“VRWorks — Multi-Res Shading,” https/developer.nvidia.com/
vrworks/graphics/multiresshading, accessed: 2019-02-05.

“VRWorks — Lens Matched Shading,” https/developer.nvidia.
com/vrworks/graphics/lensmatchedshading, accessed: 2019-
02-05.

“VRWorks — Variable Rate Shading (VRS),” https/developer.
nvidia.com/vrworks/graphics/variablerateshading, accessed:
2019-02-05.

K. Vaidyanathan, M. Salvi, R. Toth, T. Foley, T. Akenine-
Moller, J. Nilsson, J. Munkberg, J. Hasselgren, M. Sugihara,
P. Clarberg, T. Janczak, and A. Lefohn, “Coarse Pixel Shad-
ing,” in Proceedings of High Performance Graphics, ser. HPG
’14. Goslar Germany, Germany: Eurographics Association,
2014, pp. 9-18.

K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos, and A. Lefohn,
“Adaptive Image Space Shading for Motion and Defocus Blur,”
in Proceedings of the Fourth ACM SIGGRAPH / Eurograph-
ics Conference on High-Performance Graphics, ser. EGGH-
HPG’12. Goslar Germany, Germany: Eurographics Associ-
ation, 2012, pp. 13-21.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder,
“Foveated 3D Graphics,” ACM TOG, vol. 31, no. 6, pp. 164:1-
164:10, Nov. 2012.

M. Mittring, “Finding Next Gen: Cryengine 2,” in ACM SIG-
GRAPH 2007 courses. ACM, 2007, pp. 97-121.

L. Bavoil, M. Sainz, and R. Dimitrov, “Image-Space Horizon-
Based Ambient Occlusion,” in ACM SIGGRAPH 2008 talks.
ACM, 2008, p. 22.

L. Williams, “Casting Curved Shadows on Curved Surfaces,”
in ACM Siggraph Computer Graphics, vol. 12, no. 3. ACM,
1978, pp. 270-274.

W. T. Reeves, D. H. Salesin, and R. L. Cook, “Rendering An-
tialiased Shadows With Depth Maps,” in ACM Siggraph Com-
puter Graphics, vol. 21, no. 4. ACM, 1987, pp. 283-291.

R. Fernando, ‘“Percentage-Closer Soft Shadows,” in ACM SIG-
GRAPH 2005 Sketches. ACM, 2005, p. 35.

T. Ritschel, T. Grosch, and H.-P. Seidel, “Approximating Dy-
namic Global Illumination in Image Space,” in Proceedings of
the 2009 symposium on Interactive 3D graphics and games.
ACM, 2009, pp. 75-82.

Pearson Higher Education, 2004, ch.

https://developer.nvidia.com/vrworks/graphics/multiresshading
https://developer.nvidia.com/vrworks/graphics/multiresshading
https://developer.nvidia.com/vrworks/graphics/lensmatchedshading
https://developer.nvidia.com/vrworks/graphics/lensmatchedshading
https://developer.nvidia.com/vrworks/graphics/variablerateshading
https://developer.nvidia.com/vrworks/graphics/variablerateshading

[21] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and
Color Images,” in Sixth International Conference on Computer
Vision, 1998. 1EEE, 1998, pp. 839-846.

[22] M. McGuire, “Computer Graphics Archive,” |https/
casual-effects.com/data, July 2017.

https://casual-effects.com/data
https://casual-effects.com/data

	1 Introduction
	2 Related Work
	2.1 Upsampling
	2.2 Adaptive Multi-Resolution
	2.3 Variable Rate Shading
	2.4 Global Illumination Effects

	3 Multi-Resolution Rendering
	3.1 Mask Creation
	3.2 Rendering the Sub-images
	3.3 Blending the Sub-Images

	4 Implementation
	4.1 Rendering of the Sub-Images
	4.2 Blending of the Sub-Images

	5 Evaluation
	5.1 Rendering Speed
	5.2 Visual Comparison
	5.3 Discussion

	6 Conclusion & Future Work

