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Abstract
Vision Transformers (ViTs) have emerged as a powerful alter-
native to convolutional neural networks (CNNs) in a variety of
image-based tasks. While CNNs have previously been evaluated
for their ability to perform graphical perception tasks, which are
essential for interpreting visualizations, the perceptual capabili-
ties of ViTs remain largely unexplored. In this work, we inves-
tigate the performance of ViTs in elementary visual judgment
tasks inspired by Cleveland and McGill’s foundational studies,
which quantified the accuracy of human perception across differ-
ent visual encodings. Inspired by their study, we benchmark ViTs
against CNNs and human participants in a series of controlled
graphical perception tasks. Our results reveal that, although ViTs
demonstrate strong performance in general vision tasks, their
alignment with human-like graphical perception in the visualiza-
tion domain is limited. This study highlights key perceptual gaps
and points to important considerations for the application of
ViTs in visualization systems and graphical perceptual modeling.
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1 Introduction
Vision-based image analysis has undergone a significant trans-
formation with the emergence of vision transformers (ViTs) [83].
Transformer architectures have been successfully adapted to
visual data, demonstrating superior ability to capture complex
spatial patterns as compared to traditional convolutional neural
networks (CNNs) [9, 11, 17, 27, 51, 59]. This transformation also
influences areas of computer graphics, where vision models in-
creasingly support visualization systems, chart interpretation,
and graphics perception tasks. CNNs inspired by the hierarchical
organization of the human visual cortex [38], emphasize local spa-
tial features through layered convolutions [39, 42]. However, their
reliance on local receptive fields limits their ability to integrate
global context across an entire image [40]. In contrast, ViTs utilize
self-attention mechanisms that dynamically weight relationships
across the entire image, enabling simultaneous modeling of lo-
cal details and long-range dependencies [44]. This integrated
processing aligns with cognitive attention mechanisms [36] and
gives ViTs a distinct advantage in interpreting complex spatial
relationships, as global contextual understanding is particularly
critical in data visualization analysis, where meaningful inter-
pretation depends on relating multiple visual elements—such as
data points and legends—in context [46, 91]. Consequently, ViTs
offer a promising framework for advancing computational ap-
proaches to chart analysis, computer graphics, and visualization
comprehension.

However, despite their strengths in capturing complex spatial
patterns, it remains unclear how well ViTs align with human
visual perception in fundamental low-level visual tasks-an align-
ment that is essential when applying these models to data visual-
ization. Accurate perception of elementary visual encodings such
as position, length, angle, and area forms the basis of graphical
understanding, as extensively characterized by Cleveland and
McGill’s foundational experiments [12]. Their work established a
hierarchy of human perceptual accuracy that continues to inform
visualization design and evaluation [20].

Building upon this framework, our study investigates the abil-
ity of ViTs to replicate human performance on core perceptual
tasks. We compare the performance of ViTs to that of CNNs and
humans on fundamental graphical perception tasks. By situating
our study within the framework of perception-driven visualiza-
tion research, we contribute to the graphics community’s efforts
to evaluate machine models not only by task performance, but
also by perceptual fidelity to human viewers. Since transformers
represent the current state-of-the-art in chart analysis [7], under-
standing their ability to replicate human perceptual accuracy at
this basic level is essential for determining their effectiveness in
visualization-related applications, ranging from automated chart
interpretation to perceptually informed design.

To explore how ViTs perform on low-level visual tasks, we
conducted perceptual evaluations of three representative ViT
architectures: the vanilla Vision Transformer (vViT), the Con-
volutional Vision Transformer (CvT), and the Shifted Window
Transformer (Swin). These models were selected to reflect archi-
tectural diversity within the ViT family, capturing key differences
in tokenization strategies, convolutional integration, and spatial
hierarchy. Hence, we make the following contributions in this
paper:

• We evaluate the performance of three canonical ViT archi-
tectures on low-level visual tasks, replicating and extend-
ing the perception experiments conducted by Cleveland
and McGill [12].

• We compare ViTs performance to that of CNNs and hu-
man observers, and discuss the implications for percep-
tual alignment in visualization systems.

These findings shed light on the evolving role of ViTs in the
data visualization research agenda—particularly in understand-
ing, generating, and redesigning data visualizations. In addition,
we reflect on limitations and outline potential directions for fu-
ture research.

2 Related Work
Evaluating human perception. The process by which humans
interpret visual information has been a central focus in various
fields including information visualization, data science, computer
vision, and human-machine interaction. One of such insights
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dates back to the 50s, with work done by Hubel and Wiesel [38],
whose seminal work established a foundational understanding
of how visual information is processed in the brain, from the
detection of simple features such as edges, to the recognition of
complex shapes and objects. Such understanding of how people
perceive and interpret visual representations is crucial for design-
ing effective visualizations that facilitate accurate comprehension.
In their influential work, Cleveland and McGill conducted sys-
tematic experiments to evaluate the effectiveness of different
graphical representations [12], by tasking humans to solve sev-
eral low-level visual tasks. Based on their study, they shed light
on the hierarchical nature of graphical effectiveness. This percep-
tual ranking has since been adopted in many visualization design
systems [56] and empirically validated in follow-up experiments
using modern platforms such as Mechanical Turk [34, 76], sup-
porting its enduring relevance to computer graphics and visual
design. Building on these foundational studies, a recent survey
on information visualization [52] reviewed advances and chal-
lenges in the field, offering a comprehensive overview of how
perceptual and cognitive factors continue to shape visualization
research.

Extending beyond fundamental perceptual skills, later studies
examined how users cognitively interpret and reason with unfa-
miliar or complex visualizations. These investigations examine
not only accuracy in perception but also the cognitive strategies,
abilities, and evaluation methods involved in comprehending
graphical information. Kong et al. [43] explored how presenters
and viewers prefer to highlight or cue parts of a chart to draw
attention. Boy et al. [5] studied how individuals interpret graphs
and assessed their ability to understand and extract meaning
from graphical information rather than on basic low-level per-
ceptual tasks. Lee et al. [49] explored how individuals derive
meaning from unfamiliar graphical data and use their cognitive
abilities to interpret them. More recently, a visually-supported
topic modeling approach for spatio–temporal events [61] showed
how integrated visual analytics can help users identify behav-
ioral patterns, underscoring the role of perceptual and cognitive
support in reasoning with complex data. Zhu et al. [97] created
the first database for egocentric spatial images and proposed
ESIQAnet, a model that predicts perceptual quality across 2D and
3D display modes. Wang et al. [84] further demonstrated that
size discrimination thresholds vary between AR and VR, offering
insights into how visual environments influence perceptual sensi-
tivity. Sterzik et al. [74] empirically evaluated line-style variables
for uncertainty visualization in molecular graphics, highlighting
how encoding choices like width significantly impact perceptual
accuracy. Börner et al. [6] examined how individuals approach
interpreting visualizations, including their descriptive strategies
and tendencies in visual encoding preferences. Alves et al. [2]
showed that individual differences such as conscientiousness
can shape how users engage with visualizations and revise de-
cisions, reinforcing the need to consider cognitive variability in
perception-focused evaluations.
Evaluating computational models. CNNs [48] were among
the first computational models that were able to showcase re-
markable capabilities in image recognition [32, 45, 77], object
detection [31, 67, 68], and semantic segmentation [8, 69]. How-
ever, nowadays ViTs outperform CNNs across these and other
tasks [17, 53, 79, 86, 89]. Naturally, the ability of these compu-
tational methods, in extracting low-level features from visual
data with human perception, has become increasingly relevant

to the visualization research community. This intersection be-
tween vision models and visualization has also been explored
within the computer graphics community, where efforts have
been made to model human perception [54, 75] and test percep-
tual accuracy in chart comprehension using machine learning
models [92]. Zhou et al. [85] surveyed how machine learning
techniques have been applied to data visualization (ML4VIS),
outlining advances and future challenges in this emerging area.
Garcia et al. [23] surveyed visual analytics methods for deep
learning, proposing a taxonomy for architecture understand-
ing, training analysis, and feature interpretation. These studies
highlight how perception-driven evaluation contributes to visual
encoding and system design. Munz et al. [62] developed a visual
analytics system for neural machine translation that combines
attention and beam search visualizations with interactive correc-
tion to enhance translation quality and domain adaptation. Along
similar lines, Hoedecke et al. [25] presented ScrutinAI, a visual
analytics tool for semantically assessing object detection models,
further demonstrating how interactive visualization can support
the evaluation of computational perception. In a related direction,
GEMvis [10] introduced a visual analysis method for compar-
ing and refining graph embedding models, further illustrating
how visualization can support the evaluation and improvement
of complex machine learning representations. Complementing
these model-focused systems, VizAssist [4] introduced an in-
teractive assistant for visual data mining, demonstrating how
guidance and interaction can enhance users’ ability to explore,
interpret, and act on complex data. Graphics and visualization
research has also examined perceptual fidelity, addressing ren-
dering error minimization, spectral image compression, texture
blending, and perceptually guided illumination [19, 58, 87, 88].

Numerous research studies have investigated the effective-
ness of CNNs in this context. For instance, Haehn et al. [26]
conducted a comprehensive analysis, evaluating the capabilities
of CNN models on perceptual tasks relevant to visualization.
Their study provided valuable insight into the nuanced interplay
between CNN architectures and the complexities of visual data
interpretation. Funke et al. [22] addressed the complexities of
comparing human and computational model’s visual perception
while also outlining strategies to overcome potential challenges in
experimental design and inference. Kim et al. [41] further gained
insights into the similarities and disparities between neural net-
works’ visual perception and human vision. By investigating con-
cepts such as the law of closure, they demonstrated a correlation
between a network’s capacity to extract features and its ability to
generalize. Focusing on applied visualization tasks such as scat-
ter plot interpretation, Yang et al. [93] investigated how CNNs
interpret the visual features and how they can aid visualization
perception. Liu et al. [50, 51] studied how CNNs extract structural
information from simple visualizations, and used it to classify
different types of charts. While there are many other works fol-
lowing a similar line of research [14, 15, 18, 28, 29, 55, 80, 94],
discussing all would be beyond the scope of this paper. In con-
trast to these methods, other works emphasized the utilization
of CNNs for extracting data, interpreting visualizations and fur-
ther redesigning visualizations and answering visual questions
effectively [13, 55, 66, 70, 96]. Beyond classification or extraction,
some works have also explored the modeling of perceptual simi-
larity [21] and visualization literacy in computational agents [16],
signaling a broader move toward evaluating the perceptual fi-
delity of AI in visualization. Similarly, Le et al. [47] introduced
TextANIMAR, a text-based 3D animal retrieval framework that
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leverages fine-grained semantic features, highlighting the impor-
tance of aligningmachine representationswith human perceptual
distinctions in complex visual domains. Recent surveys and ap-
plications further emphasize the importance of perceptual align-
ment and interpretability in computer vision and visualization,
spanning comparative analyses of CNNs and ViTs, perceptually
motivated architectures such as capsule networks, trustworthy
model–human interaction frameworks, clarity in result presenta-
tion, and generative perceptual systems [57, 60, 63, 64, 71].

Recent research has increasingly applied ViTs to chart-related
tasks such as classification, data extraction, and element detec-
tion. Dhote et al.[14] compared ViTs and CNNs for chart classi-
fication, while Shivasankaran et al.[30] and Lal et al.[46] used
ViTs for extracting data from line charts. Yan et al.[91] combined
CNNs and ViTs to improve element detection and chart redesign
generalization. Xue et al. [90] introduced a unified framework
employing ViTs to detect data across different types of charts
(bar, line, pie), facilitating the extraction of information. Recently,
with the emergence of vision language models, researchers such
as Chen et al. [9] and Tang et al. [78] have also employed pri-
vate proprietary projects to interpret charts, enabling them to
answer certain visual questions effectively. More recently, Dong
and Crisan [16] evaluated vision-language models (VLMs) on
data visualization tasks, highlighting their strengths and limita-
tions in interpreting chart types and encodings, and emphasizing
the need for further research on their perceptual alignment with
humans.

Prior work has largely applied ViTs to chart-level interpreta-
tion tasks, such as classification or element detection. However,
to the best of our knowledge, no prior work has thoroughly exam-
ined ViTs’ capabilities on low-level visual tasks. This is especially
relevant to the field of computer graphics, where recent studies
have started to examine how deep models align with perceptual
hierarchies [26, 92], and how vision-based agents can support
visualization analysis and interpretation tasks [95]. To fill this
gap in the literature, we took inspiration by Haehn et al. [26], and
extended their work by assessing how ViTs perform on the same
class of tasks. In this study, we focus on self-trained ViT models
rather than large foundation models. This choice offers greater
control over model architecture, training data, and task-specific
fine-tuning—factors that are essential when evaluating percep-
tual alignment on narrowly defined, low-level visualization tasks.

3 Methods
A central challenge in using neural models for data visualiza-
tion lies in understanding how closely their perceptual processes
align with those of humans. While many recent studies evaluate
these models on complex interpretive tasks, such comparisons
often obscure whether they can perceive the fundamental visual
encodings—such as position, length, angle, and area—that un-
derpin graphical comprehension. To address this, we evaluate
ViTs on low-level perceptual tasks, drawing on the framework
established by Cleveland and McGill [12] and extended by Haehn
et al. [26]. These low-level tasks involve the direct interpretation
of visual primitives—marks, positions, shapes, or ratios—that sup-
port higher-level understanding in visualizations. Assessing ViTs
on such encodings allows us to examine their alignment with
foundational perceptual processes, which are critical for accurate
and efficient chart interpretation.

In the following subsections, we first examine the key aspects
of the tested low-level visual tasks, before describing the char-
acteristics of the visual stimuli employed throughout our inves-
tigations. Finally, we introduce the evaluated ViTs, and provide
information about their training process.

3.1 Low-level visual tasks
As previously mentioned, low-level visual tasks were extensively
studied in the seminal work of Cleveland and McGill [12]. They
thoroughly measured and ranked the accuracy of human per-
ception in these fundamental tasks, establishing a perceptual
hierarchy that remains a cornerstone of data visualization design
and evaluation. These tasks revolve around interpreting basic
visual encodings, the essential building blocks of data visual-
izations, and include the following nine elementary perceptual
encodings (see Fig. 4).
Position along common scale. Determining the location of
data points or objects along a shared axis, facilitating comparisons
or correlations.
Position along non-aligned scales. Assessing the relative po-
sitioning of elements across different scales or axes, aiding in
understanding multidimensional relationships.
Length. Estimating the magnitude or extent of graphical ele-
ments, such as bars or lines, to gauge quantitative values.
Direction. Recognizing the orientation or trajectory of visual
components, influencing interpretations of trends or patterns.
Angle. Assessing the angular relationships between elements,
often crucial in interpreting pie charts or radial diagrams.
Area. Evaluating the spatial extent or proportionality of enclosed
regions, guiding perceptions of magnitude or distribution.
Volume. Perceiving the three-dimensional space occupied by
graphical objects, relevant in visualizations involving depth or
volumetric data.
Curvature.Discerning the degree of curvature or bendingwithin
graphical representations, influencing perceptions of smoothness
or complexity.
Shading. Interpreting variations in light and darkness to infer
depth, texture, or emphasis within visualizations.

For our study, drawing inspiration from the experiment of
Cleveland and McGill [12], we explore various tasks emerging
from these basic encodings, including position-length, position-
angle, bars, and framed rectangles. As another relevant task, we
also investigate point cloud estimation, which we have borrowed
from Haehn et al. [26]. Thus, the investigated tasks are defined
as follows:
Position-angle. In this task, position and angle ratios need to
be estimated, which can be achieved by conducting comparisons
using both bar charts and pie charts (see Fig. 5). The task is to
estimate the ratio between the four smaller bars or sectors and
the largest bar or sector, which is clearly visible and marked.
Position-length. This task relies on position and length compre-
hension across various designs of grouped and divided bar charts.
Despite both types of charts presenting identical data, they entail
distinct elementary perceptual tasks. Grouped bar charts demand
assessments of positions along a shared scale, whereas divided
bar charts add the complexity of length evaluations. Fig. 6 depicts
the different types, whereby types 1, 2, and 3 primarily revolve
around the evaluation of positions along a common scale, and
types 4 and 5 entail the assessment of length measurements. We
define the range of difficulty in ascending order for these types,
as it was also classified by Cleveland and McGill [12].
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Bars and framed rectangles. In this investigation, we assess
bars and framed rectangles (see Fig. 7) to compare judgments
of length and position along non-aligned scales. Visual framing
aids estimation by providing reference boundaries that improve
judgments of maximum bar length.
Point cloud. This task involves exploring a random 2D point
cloud by considering Weber’s Law [37]. The task requires assess-
ing the number of dots (10,100,1000) in a scatter plot as depicted
in Fig. 8, and is subject to the just noticeable difference prob-
lem [73].

Through exhaustive analysis of these low-level visual tasks, we
gain deeper insights into how humans, CNNs and ViTs process vi-
sual information,enabling direct comparisons of their alignment
on low-level perceptual tasks.

3.2 Data
Visual stimuli and labels. For our study on low-level visual
tasks, we reproduced the Cleveland and McGill stimuli using
the same process as used by Haehn et al. [26]. In their paper,
they created stimuli as 100×100 binary images and we followed
this procedure in order to make our results comparable. We also
developed a parameterized stimuli generator for each elementary
task, with the number of possible parameter values differing per
experiment. To ensure consistent value scaling, we normalize the
generated image’s pixel values to the range of −0.5 to 0.5 before
using the images. We additionally add random noise to each pixel
to avoid memorization of the images by the networks. There is
a ground truth label associated to the image which represents
the parameter used during the generation of the image. The
labels are also scaled in the range of 0.0 to 0.1 and normalized to
the maximum and minimum value as done by Haehn et al. [26].
However, differing from their procedure, we resize the generated
images to the standard input size of 224 × 224 pixels, as required
by the ViTs. Fig. 4 shows examples of these generated visual
stimuli.
Data Splitting. Following Haehn et al. [26] we use 100k images
per task. We partition this dataset into the training, validation,
and test sets in a ratio equal to 0.6 : 0.2 : 0.2. To create these
datasets, we generate stimuli from random parameters and add
them to the sets until the target number is reached, while main-
taining distinct (random) parameter spaces for each set to ensure
that there is no leakage between training and validation/testing.

3.3 Vision Transformer Architectures
In this study, we evaluate three ViT architectures that represent
distinct design variations within the broader ViT family. Our
goal is to assess how different architectural choices affect perfor-
mance on low-level perceptual tasks. To this end, we selected: (1)
the vanilla Vision Transformer (vViT), which follows the origi-
nal transformer design without additional inductive biases; (2)
the Convolutional Vision Transformer (CvT), which introduces
convolutional layers to enhance local feature extraction; and (3)
the Swin Transformer (Swin), which incorporates hierarchical
representation learning and localized attention through shifted
windows.

These models span a range of architectural strategies—from
purely token-based global attention to hybrid and spatially aware
designs—and thus offer a diverse basis for analyzing how ViTs
process basic visual encodings relevant to data visualization.

3.3.1 Vanilla Vision Transformer. Vanilla Vision Transformer
(vViT) [17] uses the transformer architecture that was initially

built for sequential language models. Unlike CNNs where im-
ages are used as feature maps, in vViT images are divided into
sequential tokens. Therefore, as a very first step, images are
split into patches of fixed size and then flattened. Each flattened
image patch is mapped to a lower-dimensional trainable linear
projection. The output of this projection is called patch embed-
ding. Learnable embeddings are prepended to these sequential
patch embeddings as illustrated in Fig. 1. After adding an extra
positional embedding, these sequence vectors are fed into the
transformer encoder [83]. A feed forward network multi-layer
perceptron (MLP) head stacked on top of the transformer at the
position of the extra learnable embedding, that was added to the
sequence, is used to classify the images.

A transformer encoder block consists of a multi head self-
attention layer (MSA), an MLP layer, and layer norm (LN) [3].
MSA is a kind of self-attention in which 𝑘 self-attention oper-
ations run in parallel, and are refereed to as heads. This layer
concatenates all the attention outputs linearly to the right dimen-
sions. The 𝑘 attention heads help train local and global depen-
dencies in an image. The MLP layer contains a double-layer with
a Gaussian error linear unit (GELU) [35] non-linearity. LN is used
before each block to help to improve the training time and overall
performance. After each block, residual connections are applied
which improve the gradient flow without passing through non-
linear activations. The trainable parameters for vViT amount to
approximately 5.67 million.

3.3.2 Convolutional Vision Transformer. Convolutional vision
transformer (CvT) [89] is a realization of a vision transformer
in which convolutions are added to the structure, such that ro-
bustness and performance can be achieved at a lower computa-
tional cost. This architecture was designed to have the benefits
of CNNs, such as local receptive fields, shared weights, spatial
subsampling, as well as the benefits from transformers, such as
dynamic attention, context fusion, and better generalization. The
CvT architecture [89] differs from vViTs [17] in two ways as
shown in Fig. 1. First, to have CNN-like benefits, convolutional
token embedding is applied to get the feature maps of the images.
This also allows having a hierarchical multi-stage structure of
transformers. Second, convolution projection is applied to every
self-attention block instead of linear projection. This is done as a
depth-wise convolution operation. Here query, key, and values
can also be downsampled using stride within the convolution
projection without any performance loss. To classify the image,
the fully connected MLP head is added at the last stage. The train-
able parameters for CvT amount to approximately 19.55 million.

3.3.3 Swin Transformer. The Swin transformer introduced by
Liu et al. employs hierarchical processing, by dividing images into
smaller patches across multiple scales, and utilizes shifted win-
dows to enhance the receptive field of each patch without increas-
ing computational complexity [53]. By incorporating transformer
blocks within each stage as illustrated in Fig. 1, it effectively
models interactions between patches, and captures contextual
relationships. Swin transformers have shown competitive per-
formance on tasks like image classification and object detection
while maintaining computational efficiency. Like vViTs and CvTs,
Swin transformers utilize transformer blocks within each stage
to model interactions between patches and capture contextual
relationships. However, they adaptively adjust the receptive field
of each patch using shifted windows, enabling more efficient
utilization of computational resources compared to vViTs. Unlike
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(a) vViT architecture

(b) CvT architecture

(c) Swin architecture

Figure 1: Illustration of the tested ViT architectures: vViT (a), CvT (b), and Swin (c). Input image patches (green) can be
projected linearly (vViT) or through convolution (CvT). Transformer blocks with self-attention (blue) process the projected
patches, before feed forward networks and MLPs (orange) generate the output. CvT additionally uses convolutional
embedding (pink). Swin transformer blocks (gray) employ shifted windowing. All models conclude with class label outputs
(labels are parameters used during the generation of the image.)

vViTs and CvTs, Swin transformers excel in capturing both local
and global information efficiently. With a balanced approach to
scalability and performance, they offer a promising solution for
various applications. The trainable parameters for Swin trans-
former amount to approximately 27.48 million.

3.4 Training Procedure
Rather than relying on pretrained models, we chose to train each
ViT architecture from scratch on our task-specific dataset. This
approach provides two key advantages: first, it ensures that the
models are directly optimized for the low-level perceptual tasks
under investigation, rather than inheriting biases from unrelated
pretraining objectives; second, it offers greater control overmodel
inputs, architecture, and training dynamics—essential for fair
comparison and for interpreting model behavior in a perceptual
context.

Table 1: Comparison of the three tested ViTs architectures:
vViT, CvT, and Swin. The table highlights key architec-
tural distinctions, including the approximate number of
trainable parameters, patch embedding, and the type of at-
tention mechanism employed. While vViT adopts a simple
fixed patch embedding with global attention, CvT intro-
duces convolutional embeddings to better preserve spatial
locality. Swin further departs from the global attention
paradigm by employing a hierarchical structure with win-
dowed attention.

Model Parameters Patch Style Attention
Mechanism

vViT ∼5.7M Fixed Global
CvT ∼19.6M Convolutional Global
Swin ∼27.5M Hierarchical Windowed
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To ensure, that we were able to obtain state-of-the-art re-
sults from the trained ViT architectures, our training procedure
follows widely accepted training standards. For network initial-
ization, we have employed Xavier’s scheme [24], to ensure stable
convergence. A batch size of 32 was chosen, as it strikes a bal-
ance between computational efficiency and gradient accuracy,
enabling effective weight updates without excessive memory
usage. A stochastic gradient descent optimizer is employed for
training, with a momentum coefficient set to 0.9. This setup helps
by dampening oscillations and facilitating faster convergence
towards minima. The learning rate was set to 0.0001, in order to
control the step size of parameter updates during optimization.
To prevent overfitting, a weight decay of 1 × 10−6 is applied.
Weight decay introduces an additional regularization term to
the loss function, penalizing large weights and encouraging the
model to generalize better to unseen data.

All models are trained on our cluster which comprise a va-
riety of NVIDIA GPUs such as 3090, 4090 and A100. The train-
ing duration varies across different architectures on the 3090
and 4090 GPUs: vViT networks typically converge within 1-2
days, CvT networks require around 2-3 days, and Swin trans-
formers typically take 3-4 days to converge. However, on the
A100 GPU, the average training duration varies slightly, with
ViTs taking approximately 1-1.5 days to converge. All training
data stimuli generation is accomplished using the Python scikit-
image library [81, 82], while training itself is conducted using
PyTorch [65].
Confidence Intervals. To quantify the variability of model per-
formance, we report 95% confidence intervals under the assump-
tion of approximate normality of errors. Specifically, intervals
are calculated as the sample mean plus or minus 1.96 times the
sample standard deviation, which corresponds to the standard
normal coverage for a two-sided 95% interval. This method pro-
vides a conventional and interpretable measure of dispersion that
allows for straightforward comparison across models and tasks.

4 Experiments and Results
In this section, we detail the experiments conducted for our inves-
tigation into low-level visual tasks. Subsequently, we present the
results of these experiments in terms of quantitative measures
and comparative analysis. In particular, we evaluate perceptual
error using the mean log absolute error (MLAE) and define per-
ceptual bias as the systematic deviation between predicted and
ground-truth perceptual responses. This definition provides the
basis for the quantitative comparisons reported below. Our anal-
ysis involves a comparative evaluation of ViTs’ performance
against established benchmarks, in comparison to human ob-
servers and CNNs, as documented in prior research [12, 26].

4.1 Performance Analysis of Humans vs. ViTs
First, we conduct an experimental investigation into the per-
formance of CvT, Swin, and vViT architectures across the nine
basic encodings, utilizing mean squared error (MSE) for network
regression. Following Cleveland and McGill [12] and Haehn et
al. [26], we use the midmean logistic absolute error (MLAE) to
quantify perceptual accuracy. This metric is defined as:

MLAE = 𝑙𝑜𝑔2 ( |predicted percent − true percent| + 0.125) (1)

To evaluate perceptual accuracy, we compare MLAE results and
analyze the average performance against humans. Fig. 4 depicts
the results of regression analysis of the elementary perceptual

tasks across different ViTs architectures and humans. Figures 5,
6, 7, and 8 show the results of our regression analysis of Position-
Angle, Position-Length, Bars and Framed Rectangles and the
Point Cloud task experiments respectively. The mean MLAE
scores for ViTs for each task are provided in Tables 6, 7, 8, 9,
and 10. The mean average human scores are taken from Hahen
et al.’s study [26].

As shown in Table 2, human participants consistently outper-
formed top-performing ViT in most perceptual categories. For
instance, in the Position-Length task category, humans achieved
an average MLAE of 2.01, while Swin recorded a substantially
higher error of 4.72. Similarly, in the Point Cloud estimation task,
which tests sensitivity to density and distribution (subject to We-
ber’s Law), human observers achieved anMLAE of 4.95 compared
to Swin’s 6.37. Notably, humans demonstrated particularly strong
performance on the Bars and Framed Rectangles task (MLAE =
1.93), suggesting superior precision in comparative length esti-
mation along non-aligned scales—something ViTs struggle with.
These comparisons highlight that although ViTs excel in select
categories like direction or shading, they still lack the holistic
perceptual consistency exhibited by humans.

To better understand how ViTs preserve perceptual hierar-
chies, we compare task difficulty rankings based on MLAE. El-
ementary perceptual task ranking is a foundational aspect that
involves ordering their accuracy relative to one another, where
a task is considered more precise if it exhibits judgments that
closely correspond with the actual encoded quantities. Fig. 2 con-
trasts the top ViT’s perceptual task ordering with that of CNNs
and humans. We present a comparison between the performance
ranking of the top-performing network (that is, the one with
the lowest MLAE) and the human baseline rankings taken from
Cleveland and McGill [12] in Fig. 2. Though all models show gen-
eral agreement on the easiest tasks (such as length and position),
ViTs diverge on more ambiguous encodings such as curvature
and area.

4.2 Performance Analysis of CNNs vs. ViTs
To evaluate perceptual accuracy in low-level visual tasks, we
conduct a comparative analysis of MLAE results and present the
average performance across CNNs and ViTs. The CNN archi-
tectures used in our analysis follow those evaluated by Haehn
et al. [26], namely LeNet, VGG19, and Xception, with the ad-
dition of ResNet-18 [33]. The regression error comparison for
CNNs and ViTs for elementary perceptual tasks is reported in
Table 3. Across all tasks, ViTs consistently exhibited higher error
rates than CNNs, with the largest performance gap observed
in the point cloud estimation task, where the average MLAE
for ViTs was 6.37 compared to 3.40 for CNNs. Similarly, for bar
and framed rectangle tasks, ViTs yielded significantly higher er-
rors (4.75 vs. 1.93), suggesting weaker performance in estimating
lengths across non-aligned scales. The smallest gap was observed
in position-angle tasks, with Swin achieving an average error of
4.21 compared to 2.93 for VGG19. These results highlight that
while ViTs can approximate relative encodings, their precision in
absolute perceptual judgments still lags behind more specialized
CNNs. Table 2 illustrates the evaluation of CNNs and ViTs across
our various other tasks (see Section 3.1). Fig. 2 visualizes the task
ranking based on MLAE for humans [12], the best-performing
CNN (VGG19) from Haehn et al. [26], and our best ViT model
(Swin). ViTs rank these encodings as more difficult than both
humans and CNNs.
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Figure 2: Comparison of elementary perceptual task rank-
ings across humans, CNNs, and ViTs. Rankings are derived
based MLAE, with lower positions indicating better percep-
tual accuracy. The shading intensity of each box reflects
rank: darker tones indicate higher accuracy (that is, rank
1), while lighter tones correspond to lower ranks. Human
rankings are based on Cleveland and McGill [12], while
CNNs randking from Haehn et al. [26], and ViT rankings
are based on our retrained models. Lines connect identi-
cal perceptual tasks across the three groups. Notably, ViTs
exhibit most deviation—particularly in their treatment of
position and length—highlighting greater ambiguity and
weaker perceptual alignment with human judgments.

Additionally, we compare the average regression performance
of the ViT architectures across all evaluated tasks. This aggre-
gated analysis provides a clearer view of how the models perform
relative to one another beyond single-task outcomes. To ensure
the robustness of these findings, we conduct statistical tests and
report effects that are significant.
Elementary perceptual task. Across elementary perceptual
tasks, among all networks, there is a statistically significant dif-
ference (𝐹 = 14.20, 𝑝 < 0.001). Tukey HSD tests [1] indicate
that Swin performed significantly better than vViT (𝑡 = 1.19,
𝑝 < 0.001) and CvT performed significantly better than vViT
(𝑡 = 0.81, 𝑝 = 0.0001), while Swin and CvT did not differ signifi-
cantly.
Position-angle task. ANOVA [72] showed a strong main effect
(𝐹 = 419.14, 𝑝 < 0.001). Tukey HSD tests revealed that Swin
performed significantly better than both CvT (𝑡 = 0.42, 𝑝 < 0.001)
and vViT (𝑡 = 1.25, 𝑝 < 0.001). In addition, CvT was significantly
better than vViT (𝑡 = 0.83, 𝑝 < 0.001).
Position-length task.ANOVA revealed a significant effect among
the three networks (𝐹 = 11.44, 𝑝 < 0.001). Tukey HSD tests indi-
cated that Swin performed significantly better than CvT (𝑡 = 0.43,
𝑝 < 0.001) and vViT (𝑡 = 0.29, 𝑝 = 0.007), while CvT and vViT
did not differ significantly.
Bar and framed rectangle task. ANOVA also indicated a sig-
nificant effect (𝐹 = 133.55, 𝑝 < 0.001). Tukey HSD comparisons
showed that both Swin (𝑡 = 0.61, 𝑝 < 0.001) and CvT (𝑡 = 0.61,
𝑝 < 0.001) performed significantly better than vViT, whereas
CvT and Swin did not differ significantly.
Point cloud task. ANOVA yielded a significant effect (𝐹 = 7.31,
𝑝 < 0.0033). Tukey HSD results demonstrated that CvT per-
formed significantly worse than both Swin (𝑡 = −2.29, 𝑝 < 0.003)
and vViT (𝑡 = −1.63, 𝑝 < 0.037), while Swin and vViT did not
differ significantly.

Figure 3: Cross-generalization performance of the Swin
Transformer across different parameterizations of elemen-
tary perceptual tasks. Each matrix corresponds to a spe-
cific task (for example, Position, Length, Area, Shading).
Rows represent the parameterization used for training,
while columns represent the parameterization used for
testing. The top row in each matrix shows within-task (in-
parameter) performance, with diagonal entries indicating
baseline accuracy when training and testing on the same
parameter configuration. Off-diagonal entries indicate the
model’s ability to generalize to new parameter settings
(that is, changes in object position, size, or shape). Higher
values off-diagonal reflect poor generalization and sensi-
tivity to unseen visual variations.
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Figure 4: Comparison of Regression Errors for Elementary
Perceptual Tasks: elementary perceptual tasks experiment.
Comparison of visual stimuli (left) and MLAE scores with
95% confidence intervals (lower is better) for various ViTs
and humans (right). Swin generally aligns more closely
with human performance for simpler encodings, while
all ViTs diverge on complex features like curvature and
shading. Human scores derived fromCleveland andMcGill,
and Hahen et al.’s studies [12, 26].
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Figure 5: Performance in Position-Angle Estimation: Com-
parison of visual stimuli (left) and MLAE scores with 95%
confidence intervals (lower is better) for various ViTs and
humans (right). Human scores derived from Cleveland and
McGill, and Hahen et al.’s studies [12, 26]. All ViTs under-
perform compared to human baselines.
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Figure 6: Accuracy in Position-Length Estimation Across
Chart Types: Comparison of visual stimuli (left) andMLAE
scores with 95% confidence intervals (lower is better)
for various ViTs and humans (right). Human scores de-
rived from Cleveland and McGill, and Hahen et al.’s stud-
ies [12, 26]. Swin outperforms other ViTs but still lags be-
hind human perception.
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Table 2: Average error (MLAE) for humans, and the best-
performing CNN (VGG19) from Haehn et al. [26], and our
best ViT model (Swin) different perceptual experiments.
All models were trained from scratch under a unified setup
for fair comparison. Lower values indicate better percep-
tual accuracy.

Task Category Humans VGG19 [26] Swin

Position-Angle
Bar 2.18 4.22
Pie without outline 3.30 4.21
Pie 3.30 4.21

Average Error 2.05 2.93 4.21

Position-Length
Type 1 3.96 4.72
Type 2 3.95 4.74
Type 3 4.35 4.72
Type 4 3.67 4.73
Type 5 3.90 4.71

Average Error 2.01 3.97 4.72

Bars and Framed Rectangles
Bars 1.98 4.76
Framed Rectangles 1.87 4.74

Average Error 3.63 1.93 4.75

Point Cloud
Base 10 1.65 5.21
Base 100 3.84 8.43
Base 1000 4.71 5.48

Average Error 4.95 3.40 6.37

FRAMED RECTANGLES

BARS

0 63

Human CvT Swin vViT

Figure 7: Performance in Length Estimation with Framed
Rectangles and Bars: Comparison of visual stimuli (left)
and MLAE scores with 95% confidence intervals (lower is
better, best result is marked as boldface) for various ViTs
and humans (right). Human scores derived from Cleveland
and McGill, and Hahen et al.’s studies [12, 26]. Like in pre-
vious cases, humans perform better than ViTs.

We present a selection of cross-parameterization results in
Fig. 3. These matrices are shown only for our best-performing
network, the Swin Transformer, to highlight upper-bound per-
formance within the ViT family. Each matrix corresponds to a

10

100

1000

0 105

Human CvT Swin vViT

Figure 8: Perception of Quantity in Point Cloud Estimation.
Comparison of visual stimuli (left) and MLAE scores with
95% confidence intervals (lower is better) for various ViTs
and humans (right). Human scores derived from Cleveland
and McGill, and Hahen et al.’s studies [12, 26]. Note how
ViTs struggle significantly with estimating dot quantities.

Figure 9: Analysis of mean performance for CNNs from
the study by Hahen et al. [26] across five experiments. The
lowest mean score indicates the best-performing CNN.

specific elementary task (for example, position, length, area, shad-
ing), with rows denoting the parameterization used during train-
ing and columns representing those used during testing. Diagonal
entries capture in-task performance, while off-diagonal entries
reveal generalization to unseen variations. The consistently ele-
vated MLAE values off-diagonal suggest that Swin struggles to
generalize across modest changes in visual configuration—such
as variations in object width, spatial alignment, or density. This
pattern is especially pronounced in the Position and Length tasks,
where generalization breaks down significantly. These results
indicate that even top-performing ViTs are highly sensitive to
training conditions, limiting their applicability in settings requir-
ing robust perceptual inference.

Figures 9 and 10 illustrate the comparison of mean perfor-
mance between CNNs and ViTs for each task. They showcase
the best-performing CNN and ViT individually in separate plots.
While Swin leads among ViTs, it remains inconsistent and trails
behind CNNs in key perceptual benchmarks.
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Table 3: Performance comparison on elementary perceptual tasks for various CNN and ViT models. The comparison is
based on the MLAE scores (lower is better, best results encoded in boldface). VGG19 consistently achieves the lowest error
among CNNs, while Swin leads the ViTs, yet with noticeably higher errors in complex visual encodings.
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MLP [26] 3.84 3.61 1.99 4.65 4.61 2.01 2.38 2.34 3.04 3.16

LeNet [26] 1.36 1.35 3.19 3.07 3.33 2.21 1.91 1.81 2.23 2.27
VGG19 [26] -0.04 0.26 -0.14 0.92 0.66 -0.17 0.87 0.28 0.14 0.30
Xception [26] 1.04 1.02 1.11 1.57 1.69 1.38 2.10 1.13 1.82 1.42
ResNet-18 2.33 3.22 1.65 2.21 3.71 3.01 2.46 1.71 2.73 2.55

Average CNNs Error 1.64

CvT 4.76 5.40 3.28 3.62 4.15 4.65 4.60 4.19 5.19 4.42
Swin 1.85 -0.56 -1.38 0.57 0.83 2.94 2.54 0.82 0.95 0.95
vViT 3.25 3.03 1.26 2.07 3.48 4.06 2.81 2.51 2.46 2.77

Average ViTs Error 2.71

Table 4: Performance comparison of CNNs and ViTs (* indicates pretrained on ImageNet [45]) on elementary perceptual
tasks (lower is better, boldface indicates the best performing model). Pretrained CvT shows improved perceptual accuracy
compared to models trained from scratch.
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VGG19* [26] 1.02 1.09 0.87 2.84 2.31 0.49 1.16 0.71 0.73 1.24
Xception* [26] 1.65 1.71 1.59 3.46 2.60 0.80 2.03 1.17 1.57 1.84

Average CNNs Error 1.54

CvT* 2.55 3.64 -0.38 1.18 0.88 0.62 0.62 4.03 2.38 1.70
Swin* 2.10 2.16 1.93 1.38 0.55 1.53 3.54 1.94 3.55 2.15
vViT* 0.97 3.28 0.03 1.99 2.39 1.33 4.25 0.90 2.98 2.01

Average ViTs Error 1.95

Table 5: Average MLAE scores (lower is better) of three ViTmodels (CvT, Swin, vViT) across various experimental conditions
in our ablation study: base architecture, increased image resolution, expanded training data, and smaller patch sizes
(vViT-8). Results show minimal performance gains from increased data or resolution. Swin consistently outperforms
others, especially in elementary perceptual tasks, while vViT-8 shows improvement only in specific configurations like
position-length.

Experiments Base Image Resolution Large Data Pretraining Small Patch

CvT Swin vViT CvT Swin vViT CvT Swin vViT CvT Swin vViT vViT-8

Elementary Perceptual Tasks 4.42 0.95 2.77 4.44 2.60 3.05 4.02 1.99 2.58 1.70 2.15 2.01 4.61
Position-Length 5.34 4.72 5.05 5.15 4.73 5.09 5.05 4.72 5.03 4.77 4.70 5.00 2.14
Positron-Angle 4.62 4.21 5.41 4.93 4.22 5.54 4.66 4.21 5.30 4.47 4.32 4.72 5.51
Bars and Framed Rectangles 4.72 4.75 5.31 4.80 4.77 5.42 4.78 4.76 5.13 4.78 4.73 4.99 5.35
Point Cloud 9.09 6.02 6.83 35.21 4.80 7.01 42.41 6.77 6.60 4.39 3.94 5.86 7.45

5 Discussion
To investigate the alignment of ViTs with humans’ visual pro-
cessing of visual data, we discuss and relate the individual re-
sults for ViTs, humans and also CNNs. Our discussion draws on

quantitative differences in perceptual error (MLAE), as well as
task-specific rankings, to evaluate the strengths and limitations
of each approach.
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Table 6: Comparison of mean MLAE and standard deviation between human observers and ViT models across nine
elementary perceptual tasks. While ViTs like Swin achieve low average errors in certain tasks (e.g., shading, direction), they
exhibit higher variance and inconsistency across encodings compared to humans, highlighting their limited reliability in
generalizing perceptual judgments.

Category Human (mean ± std) [26] CvT (mean ± std) Swin (mean ± std) vViT (mean ± std)

Position common scale 3.30 ± 1.08 4.68 ± 0.06 2.81 ± 1.02 3.77 ± 0.53
Position non-aligned scale 3.14 ± 1.48 4.88 ± 0.26 2.61 ± 2.46 3.57 ± 0.47
Length 3.49 ± 1.08 3.77 ± 0.25 1.84 ± 1.04 1.23 ± 0.42
Direction 3.75 ± 0.90 4.14 ± 0.16 0.72 ± 0.24 2.12 ± 0.13
Angle 3.28 ± 1.00 4.16 ± 0.14 0.88 ± 0.61 3.48 ± 0.28
Area 3.63 ± 0.79 4.80 ± 0.51 2.25 ± 1.08 3.88 ± 0.11
Volume 5.18 ± 0.90 4.39 ± 0.14 2.67 ± 0.50 3.24 ± 0.38
Curvature 4.13 ± 0.30 4.18 ± 0.15 0.93 ± 0.49 2.15 ± 0.34
Shading 4.16 ± 0.68 4.87 ± 0.19 0.36 ± 0.74 2.74 ± 0.22

Table 7: Comparison ofmeanMLAE and standard deviation between human observers and ViTmodels across position-angle
tasks. While ViTs like Swin achieve low average errors in each position angle task but they exhibit higher errors compared
to humans, highlighting their limited reliability in generalizing perceptual judgments.

Task Human (mean ± std) [26] CvT (mean ± std) Swin (mean ± std) vViT (mean ± std)

Bar chart 2.05 ± 0.12 4.72 ± 0.19 4.21 ± 0.01 5.45 ± 0.03
Pie chart 2.05 ± 0.12 4.51 ± 0.06 4.22 ± 0.01 5.49 ± 0.03
Pie chart without outline 2.05 ± 0.12 4.68 ± 0.15 4.21 ± 0.01 5.44 ± 0.05

Table 8: Comparison of mean MLAE and standard deviation between human observers and ViT models across position-
length tasks. While ViTs like Swin achieve low average errors in each position length type and they exhibit higher errors
compared to humans, highlighting their limited reliability in generalizing perceptual judgments.

Category Human (mean ± std) [26] CvT (mean ± std) Swin (mean ± std) vViT (mean ± std)

Position length type 1 1.40 ± 0.14 4.79 ± 0.05 4.71 ± 0.02 4.77 ± 0.04
Position length type 2 1.72 ± 0.20 4.95 ± 0.17 4.76 ± 0.04 5.31 ± 0.06
Position length type 3 1.84 ± 0.16 5.16 ± 0.64 4.72 ± 0.01 4.82 ± 0.07
Position length type 4 2.35 ± 0.18 5.52 ± 0.10 4.72 ± 0.01 5.10 ± 0.05
Position length type 5 2.72 ± 0.16 5.37 ± 0.01 4.74 ± 0.01 5.13 ± 0.09

Table 9: Comparison of mean MLAE and standard deviation between human observers and ViT models for bar and framed
rectangle tasks. Swin achieve low average error for framed rectangle tasks and CvT for Bar tasks but they exhibit higher
errors compared to humans, highlighting their limited reliability in generalizing perceptual judgments.

Task Human (mean ± std) CvT (mean ± std) Swin (mean ± std) vViT (mean ± std)

Framed Rectangle 3.33 ± 0.83 4.76 ± 0.03 4.75 ± 0.02 5.46 ± 0.05
Bar 3.93 ± 0.52 4.74 ± 0.05 4.75 ± 0.01 5.26 ± 0.07

Table 10: Comparison of mean MLAE and standard deviation between human observers and ViT models across three point
cloud estimation tasks. vViT achieve low average error in Base 1000 task but overall exhibit higher errors compared to
humans, highlighting their limited reliability in generalizing perceptual judgments.

Task Human (mean ± std) [26] CvT (mean ± std) Swin (mean ± std) vViT (mean ± std)

Base 10 4.00 ± 0.52 9.12 ± 0.21 6.62 ± 1.23 8.22 ± 0.07
Base 100 5.39 ± 0.25 9.00 ± 0.00 6.03 ± 2.08 7.36 ± 0.08
Base 1000 5.46 ± 0.35 7.13 ± 0.82 5.73 ± 0.23 4.79 ± 0.00
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Figure 10: Analysis of mean performance for our trained
ViTs across five experiments. Swin shows the best overall
performance among ViTs, yet remains inconsistent com-
pared to CNNs in several key encodings.

5.1 Humans vs. ViTs
Our investigations indicate that across the nine elementary per-
ceptual tasks, ViTs demonstrated competitive performance com-
pared to human observers. ViTs achieved an MLAE of 2.71 across
elementary tasks, compared to 3.16 for human observers, with
Swin achieving the lowest error of 0.95 (see Table 3). In particu-
lar, Swin outperformed human participants in direction estima-
tion (MLAE: 0.72 vs. 3.75) and shading (0.36 vs. 4.16), suggesting
strong capabilities in processing fine-grained texture and orien-
tation cues. Ranking analysis (see Fig. 2) further indicates partial
alignment between ViTs and human judgments. Best performing
ViT model Swin exhibit similar alignment with human ranking
for position non-aligned scale (rank:2), direction (rank:3) and
shading (rank:6). Yet, the divergence became apparent in tasks
involving curvature and area, where ViTs ranked these tasks as
significantly easier than humans did, pointing to fundamental
differences in how visual information is processed. As previ-
ously reported, humans often face challenges with such tasks
due to the lack of visual cues and spatial reasoning abilities [12].
In contrast, ViTs excel in solving these tasks more effectively,
potentially by leveraging their inherent attention mechanisms.
However, when comparing performance across tasks, such as
position-length, position-angle, bars and framed rectangles, as
well as point cloud perception, humans outperform ViTs. For in-
stance, in the position-length task(see Table 2, human observers
achieved an average MLAE of 2.01, whereas Swin’s error was
more than double at 4.72. Similarly, in the point cloud task, Swin
recorded an average MLAE of 6.37, compared to 4.95 for humans.
This discrepancy prompts significant questions about the feasi-
bility of using ViTs in the domain of visualization methodologies.
These results underscore that while ViTs are effective in some per-
ceptual judgments, particularly those involving local structure or
texture, they remain less reliable in tasks requiring comparative
reasoning or estimation under uncertainty. This raises questions
about the consistency of ViT-based interpretation in visualiza-
tion systems, especially when human-like perceptual fidelity is
required. Our findings on task-specific divergences — for exam-
ple, ViTs treating curvature and area as easier than humans, or
performing worse in comparative judgments like position-length
and point cloud perception — suggest that such perceptual mis-
alignments could have practical consequences. In particular, they
may affect downstream applications such as automated chart

summarization and perceptually optimized visualization gener-
ation, where alignment with human perception is critical for
producing effective and trustworthy outcomes.

5.2 CNNs vs. ViTs
The previous findings by Haehn et al.’s study on CNNs [26] em-
phasize the superior regression capabilities of CNNs over humans
in elementary perceptual tasks. Our study on ViTs aligns with
these findings, yet it falls short of outperforming CNNs by a mar-
gin of error of 6%, as demonstrated in Table 3. However, upon
comparing the ranking of CNNs and ViTs with humans across
various perceptual tasks, ViTs exhibit closer alignment with hu-
man ranking than CNNs as shown in Fig. 2. ViTs share similar
ranking as humans for position non-aligned scale (rank:2), di-
rection (rank:3) and shading (rank:6). Although ViTs are capable
of interpolating between training datapoints, our findings indi-
cate, that their ability to generalize across broader parameter
variations is limited, similar to CNNs. In particular, the Swin
Transformer showed decreasing accuracy as the complexity of
parameterization increased, consistent with observations from
CNNs in Haehn et al. [26]. Moreover, similar to the VGG19 model
reported Haehn’s study, the Swin Transformer struggled with
generalization to transformations not seen during training, such
as changes in width or spatial translations. These results sug-
gest that, despite architectural differences, ViTs share similar
limitations with CNNs when it comes to handling variability in
visual encoding. In regression analyses across other tasks such
as position-angle, position-length, bars, framed rectangles, and
point cloud perception, CNNs perform better than ViTs, with
average errors ranging from 2.93 to 4.21, 3.97 to 4.72, 1.93 to 4.75,
and 3.40 to 6.37, respectively. This behaviour might be attributed
to the absence of a local receptive field and the data-intensive
nature of ViTs.

Further, in our investigation of various ViT architectures, we
observed that the Swin transformer demonstrated superior per-
formance compared to others, including CvT, despite CvTs draw
inspiration from CNNs. This discrepancy in performance could
perhaps be attributed to Swin’s hierarchical design and its uti-
lization of spatial and sliding window mechanisms, features that
share similarities with CNNs. Thus, we believe that their strength
lies in effectively combining both local and global spatial infor-
mation and utilizing an extensive array of trainable parameters
compared to CNNs. However, in general, ViTs encounter diffi-
culties when attempting to interpret information from low-level
visual tasks and are therefore not reliable for decision-making in
the field of visualization.

5.3 Ablation Studies
To ensure that the reported findings are not bound to a specific
parameter set, we have conducted ablation studies in order to
analyze the behavior of ViTs under varying parameters. Tables 4
(bottom) and 5 show the results of our ablation settings.
Image resolution. ViTs are typically optimized to process im-
ages at a resolution of 224 × 224. Rather than merely resizing the
images to fit this requirement, we generated a separate dataset
with this resolution. However, this adjustment did not yield im-
proved performance as shown in Table 5.
Patch size. Besides image resolution, patch size has a great
impact on the outcome of ViTs. Nevertheless, in the past, ViTs
have shown strong results in image classification with relatively
large patches, we conducted an ablation study on vViTs using

12



smaller patches, particularly of size 8, to evaluate their impact on
low-level perceptual tasks. However, as shown in Table 5 (right),
this change did not lead to improved performance. Consequently,
it is evident that the optimal balance between computational
efficiency and perceptual accuracy is not solely determined by
patch size. This suggests that simply reducing patch size does
not guarantee better perceptual alignment in low-level tasks, and
that architectural or training adaptations may be necessary to
leverage finer granularity effectively.
Training data size.While CNNs traditionally rely on datasets
of a certain size to maintain consistency, ViTs excel with larger
datasets. Therefore, we opted to enhance training by utilizing
datasets four times larger than the original, aligning with the
capacity of transformers to leverage extensive data for better
performance. Despite their data excessive need, we did not find
the performance enhanced when increasing training data size as
shown in Table 5.
Pretraining. In our ablation study, we utilized pretrained trans-
formers as the foundation for finetuning experiments. Leverag-
ing pretrained models allows our experiments to start from a
highly informative point. For this purpose, we leveraged ViTs
pre-trained on natural images sourced from the widely recog-
nized ImageNet dataset [45]. Our findings reveal two noteworthy
observations. Firstly, our best-performing network, Swin, exhib-
ited superior performance compared to using pretrained weights.
However, Table 4 illustrates the overall average error on elemen-
tary perceptual tasks, which was lower when utilizing pretrained
networks trained on the ImageNet dataset, with CvT achieving
the lowest error rate. These findings suggest that while pretrain-
ing can enhance perceptual accuracy, its effectiveness depends
on the model’s structure and its compatibility with the target
task.

6 Conclusions and Future Work
Our study sheds light on the perceptual capabilities of ViTs in
comparison to both humans and CNNs. While ViTs exhibit supe-
rior performance compared to CNNs in general vision tasks, they
still fall short of human performance. This raises concerns about
their efficacy in data visualization, especially when requiring
performance in low-level visual tasks. This raises concerns about
their reliability in tasks that demand perceptual accuracy and
interpretability. We believe that our work highlights the need for
further research, and underlines the need for redesigning applica-
tions to better leverage the strengths of ViTs in data visualization
tasks.

In our study, we have focused our investigation on three spe-
cific types of architectures. However, there are promising av-
enues for future research that could provide deeper insights into
their perceptual limitations and strengths. For example, exploring
larger ViT models may reveal how model scale affects alignment
with human perception. Additionally, further analysis of the CvT
architecture is warranted, as it combines elements from both
CNNs and ViTs and has demonstrated improved performance
when pretrained with natural images. Moreover, while our work
has primarily utilized open-source ViT architectures, future work
could also explore closed-source multimodal models like GPT-4o,
which have shown potential in high-level visual reasoning.

Integrating these diverse models and delving deeper into their
interactions could yield valuable insights applicable across a
wide spectrum of visualization applications. All these efforts
have the potential to further enhance our understanding of ViTs’

visual perception capabilities. Ultimately, our findings lay the
groundwork for more perceptually aligned model development
and evaluation in the graphics and visualization community.
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