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Abstract

Focused Ion Beam Scanning Electron Microscopy (FIB-
SEM) is widely used for ultrastructural imaging, with seg-
mentation of FIB-SEM stacks being essential for down-
stream quantification and biological analysis. However,
manual annotation of these datasets is labor-intensive and
time-consuming. Training semantic segmentation models
offers a scalable alternative, but FIB-SEM datasets are typi-
cally small and exhibit low variance as the imaging process
involves slicing and capturing individual sample sections.
This poses a significant challenge for model training.

Data augmentation via generative models has emerged
to address limited data, with diffusion models showing
state-of-the-art synthesis capabilities. Yet, their depen-
dence on large natural image datasets restricts direct ap-
plication to FIB-SEM data. In this work, we explore fine-
tuning ControlNet — a conditional diffusion model extension
— on small FIB-SEM datasets to produce realistic, label-
consistent synthetic images for segmentation. Despite rely-
ing on a diffusion backbone trained exclusively on natural
images, we show that fine-tuning ControlNet with domain-
specific structural cues enables effective data augmenta-
tion, leading to an impressive downstream mloU improve-
ment of up to +15.4. We compare ControlNet augmenta-
tions against standard augmentation techniques in respect
to generation time as well as downstream task performance.
We additionally explore different dataset sizes, and provide
insights into the feasibility of applying large-scale genera-
tive models in data-scarce, low-variance scientific imaging
domains like FIB-SEM.

*These authors contributed equally to this work.

1. Introduction

EM has become an indispensable tool in materials science
and biology for studying structures at the nanoscale [2, 14,
29, 31]. Sepcifically, Focused Ion Beam Scanning Elec-
tron Microscopy (FIB-SEM), a specialized sub-modality
of EM, is increasingly vital for ultrastructural imaging of
complex biological architectures, such as neuronal circuits
in connectomics or cellular organelles [8, 22, 23]. Cru-
cially, this technique generates data by iteratively milling
away nanometer-thick layers of a sample and imaging the
freshly exposed surface. The comprehensive data analy-
sis and quantification of these complex FIB-SEM datasets,
critically relies on the accurate segmentation of the imaged
structures [28, 38]. However, performing this segmentation
manually is exceedingly time-consuming and often sub-
jective, making it a major bottleneck for large-scale stud-
ies [30, 35]. Hence, there is a strong imperative to train
automated deep learning models for this task. Yet, collect-
ing large-scale datasets for machine learning tasks such as
image segmentation or classification remains a significant
challenge. The process of acquiring EM images is both
time-consuming and resource-intensive [16, 37], requiring
access to specialized instrumentation and sample prepara-
tion protocols that must be carried out by trained experts.
Furthermore, image annotations — especially for semantic
segmentation — typically demand domain expertise, making
large annotated datasets prohibitively expensive and slow to
assemble. Unfortunately, neural networks such as CNNs of-
ten struggle when trained on limited data [41]. In FIB-SEM
datasets, the low variance — due to high similarity between
adjacent slices — further compounds this issue. The limited
effective diversity restricts the model’s exposure to distinct
visual features, making it particularly challenging to train
robust segmentation models without overfitting.

To address the limited availability of training data in



EM, data augmentation has emerged as a key research area.
Traditional augmentation techniques, such as random crop-
ping, flipping, or contrast adjustments, have been widely
used [37, 39, 39, 44], but are inherently limited in the di-
versity they introduce. Hence, generative models, such as
Generative Adversarial Networks (GANs) [12], have shown
promise in generating synthetic EM-like images for use in
data augmentation pipelines [36]. These models offer a
cost-effective way to enrich training datasets compared to
the substantial expense of additional image acquisition via
EM instruments.

With the advent of diffusion models, generative image
synthesis has reached new state-of-the-art levels in terms of
realism, diversity, and control [9, 17, 18, 32, 40, 48]. These
models, particularly Stable Diffusion [32], have demon-
strated remarkable capabilities in generating high-quality
natural images with feasible compute resources, due to
computations in a low dimensional latent space. Hence,
these models have rapidly become the foundation for a new
generation of data-driven applications [25, 45, 46]. How-
ever, adapting these models to specialized imaging domains
like EM presents substantial challenges. Diffusion models
are generally trained on massive datasets of natural images,
and their performance degrades considerably when applied
to domains with very different statistical properties, such as
grayscale, high-frequency, and noise-prone EM imagery.

This domain shift renders pretrained diffusion models
largely ineffective when used out of the box for EM data
generation. Additionally, although training diffusion mod-
els does not necessarily require labeled data, it still demands
a large quantity of raw images, which remains a limiting
factor in the EM domain due to the high acquisition cost.
Consequently, diffusion-based data augmentation for EM
has yet received limited attention, despite its promising po-
tential.

In this paper, we investigate whether diffusion models
pretrained on natural images can be leveraged for FIB-SEM
data augmentation using only a small number of domain-
specific samples. Specifically, we explore fine-tuning Con-
trolNet [48] — a conditioning mechanism for diffusion mod-
els —on small FIB-SEM datasets to guide image synthesis in
a controllable way. This approach is particularly well-suited
for segmentation tasks, as ControlNet enables conditioning
on structural cues such as segmentation masks, allowing the
generation of image—label pairs. This, in turn, allows us
to augment limited datasets with synthetic data to improve
downstream model performance. Our contributions are as
follows:

* We show that ControlNet, when fine-tuned on a small
FIB-SEM dataset, can generate structurally coherent im-
ages conditioned on segmentation masks, even when us-
ing a Stable Diffusion backbone pretrained exclusively on
natural images.

* We evaluate the generated data in the context of seman-
tic segmentation, demonstrating measurable improve-
ments when augmenting training sets with ControlNet-
generated samples.

* We compare our approach to standard data augmentation
techniques and assess the trade-offs in generation time
and sample utility under varying dataset sizes.

By doing so, we aim to make a first step toward bring-
ing state-of-the-art generative modeling into data-scarce do-
mains like EM, and make our training code and ControlNet
weights publicly available at https://github.com/
HannahKniesel/Natural2Nanoscale.

2. Related Work

This section provides an overview of existing literature rel-
evant to our work, structured around generative models in
scientific imaging, the advent of conditional diffusion mod-
els, and data augmentation techniques focusing on EM and
other data-scarce scientific domains.

Semantic Segmentation for Biological EM Semantic
segmentation is fundamental to quantitative analysis in bi-
ological EM. It underpins critical scientific discoveries, en-
abling detailed morphological studies of cellular structures,
organelles, membranes, and neuronal circuits [2, 29, 31].
Historically, EM image segmentation relied on laborious
manual annotation or computationally intensive classical
image processing techniques such as thresholding, water-
shed algorithms [3], or active contours [20]. While provid-
ing some level of automation, these methods often struggled
with the complex, noisy, and highly varied morphology in-
herent to EM data, requiring extensive manual correction.

The advent of deep learning, particularly CNNs, revolu-
tionized medical and biological image analysis, including
EM segmentation. Architectures like the U-Net [33], with
its symmetric encoder-decoder structure and skip connec-
tions, quickly became the defacto standard due to their ex-
ceptional performance on biomedical imaging tasks, even
with relatively small datasets. Subsequent adaptations and
enhancements of U-Net [5, 26, 34], such as 3D U-Nets for
volumetric EM data [24] and densly-connected variants [6],
have further improved performance in various EM contexts.
These deep learning models are capable of learning intri-
cate, high-level features directly from raw image data, lead-
ing to significantly more accurate and efficient segmenta-
tion compared to traditional methods.

Generative Models The scarcity of large, annotated
datasets in specialized scientific domains, including EM,
has motivated the application of generative models for data
augmentation. Early efforts often leveraged GANs [12]
to synthesize domain-specific images [15, 19, 21, 36, 42].
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GANs have for instance been used to generate synthetic
EM-like images for augmenting training pipelines, show-
ing promise in tasks like Herpesvirus detection [36]. These
models offered a cost-effective alternative to expensive real
image acquisition. However, GANs often suffer from train-
ing instability, mode collapse, and difficulty in controlling
the semantic content of generated images.

More recently, diffusion models have emerged as state-
of-the-art generative models, demonstrating unprecedented
realism, diversity, and controllable synthesis capabilities
across various natural image tasks [9, 17, 18, 32, 40]. Their
success has naturally led to their exploration in scientific
and medical imaging. For example, Wu et al. [45] intro-
duced MedSegDiff, a diffusion model specifically designed
for medical image segmentation. Similarly, works like
SegGen [46] and studies on open-vocabulary object seg-
mentation [25] demonstrate the power of diffusion models
in generating images with corresponding masks or under-
standing novel semantic concepts, respectively. In the EM
domain itself, dedicated diffusion models such as EMDif-
fuse have been proposed for tasks like denoising and super-
resolution by fine-tuning on noisy-clean image pairs [27].
While these applications show the versatility of diffusion
models in scientific contexts, many still require substantial
domain-specific data or are tailored to specific tasks other
than semantic segmentation augmentation with explicit la-
bel control.

Conditioning in Diffusion Models The ability to exert
fine-grained control over the image generation process is a
critical feature for practical applications of generative mod-
els, allowing to not only generate synthetic data, but to also
create labeled synthetic data. Conditional diffusion mod-
els achieve this by integrating external inputs that guide
the synthesis. A pivotal advancement in this area is Con-
trolNet [48], which revolutionized the application of large,
pre-trained text-to-image diffusion models like Stable Dif-
fusion [32]. ControlNet works by cloning the encoder of a
pre-trained diffusion model and training it to accept various
forms of conditioning signals — such as edge maps, segmen-
tation masks, depth maps, or keypoints — while keeping the
original diffusion model’s weights frozen. This architecture
allows ControlNet to leverage the vast, high-quality gener-
ative knowledge embedded in the frozen backbone (trained
on natural images) and adapt it to conditional inputs with
relatively small datasets. In this work, we investigate not
only the ability of ControlNet to follow conditional inputs
after fine-tuning on a small EM segmentation dataset, but
also whether the frozen Stable Diffusion backbone, origi-
nally trained on natural images, can effectively handle the
domain shift introduced by EM data.

Beyond its initial applications in natural image editing
and controlled generation, ControlNet has begun to find

traction in diverse biomedical imaging applications. Ex-
amples include adaptive whole-body PET image denois-
ing [47] and applications in X-ray image synthesis [11].
The success of these applications underscores ControlNet’s
versatility in adapting powerful generative models to spe-
cialized image modalities and specific tasks. Our work ex-
tends this promising direction by investigating ControlNet’s
capacity to generate label-consistent EM images for seman-
tic segmentation, directly addressing the challenge of data
scarcity in this unique scientific domain by leveraging struc-
tural cues from semantic masks.

Data Augmentation for Small Datasets The challenge
of limited data is pervasive in scientific machine learning,
particularly in high-cost imaging modalities like EM [16,
37]. Neural networks, such as CNNs commonly used for
segmentation, are known to perform poorly when trained
on insufficient data [41]. To mitigate this, data augmen-
tation is a crucial technique. Traditional augmentation
methods, including geometric transformations (e.g., ran-
dom cropping, flipping, rotation) and intensity adjustments
(e.g., contrast, brightness) are widely applied in EM and
other fields [39, 44]. While effective, these methods are
inherently limited in the novel diversity they introduce, as
they only apply transformations to existing samples rather
than generating genuinely new content.

Generative models, as discussed above, represent a more
advanced form of data augmentation capable of synthesiz-
ing entirely new samples. Earlier works in EM have ex-
plored GANs for this purpose, demonstrating their poten-
tial to enrich training datasets [36]. However, these gener-
ative approaches for EM data augmentation not only faced
limitations regarding image quality, diversity, but more im-
portantly, the precise semantic control required for tasks
like semantic segmentation. Our work directly addresses
these limitations by introducing ControlNet-based augmen-
tation for EM. By leveraging ControlNet’s ability to gener-
ate images conditioned on explicit segmentation masks, we
can produce synthetic EM image-label pairs that are consis-
tent with the desired segmentation, offering a superior and
more controlled form of data enrichment compared to prior
methods. This represents a significant step towards improv-
ing downstream task performance of semantic segmentation
even in data-scarce scientific contexts.

3. Data Challenges in EM

EM data for semantic segmentation differs significantly
from natural image datasets like ADE20k [49], Pascal
VOC [10], or COCO-Stuff [4], which presents unique chal-
lenges and opportunities for generative data augmentation.

Firstly, EM images are fundamentally distinct in ap-
pearance from RGB natural images that typically depict
object surfaces. EM encompasses various modalities,
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Figure 1. Training dataset sizes for common semantic segmen-
tation benchmarks, comparing natural image datasets with those
used in electron microscopy (EM). Natural image datasets in-
clude PASCAL VOC [10], ADE20K [49], and COCO-Stuff [4].
EM datasets include CREMI [ 1], Lucchi++ and Kasthuri++[7], as
well as Dataset 1 from Devan et al.[37]. Note that the y-axis is
shown on a logarithmic scale for improved visibility across the
wide range of dataset sizes. The chart highlights the significantly
smaller scale of available EM training data.

each offering unique perspectives: Scanning Electron Mi-
croscopy (SEM) visualizes sample surfaces; Transmission
Electron Microscopy (TEM) provides 2D projections of
internal structures by transmitting electrons through ultra-
thin sections; Scanning Transmission Electron Microscopy
(STEM) offers high-resolution insights by scanning a fo-
cused beam through the sample; and FIB-SEM combines
ion milling with SEM imaging to acquire serial sections. In
this work, we specifically focus on FIB-SEM data, which,
like most EM modalities, is grayscale and often reveals
the intricate internal ultrastructure of samples at nanome-
ter resolutions. The visual content in these images is highly
specialized, frequently repetitive (e.g., membrane bilayers),
and follows specific biological rules, diverging significantly
from the diverse semantics of natural scenes. Additionally,
EM images often contain unique forms of noise and artifacts
due to the specialized acquisition and preparation processes.
This profound domain gap necessitates fine-tuning genera-
tive models to synthesize realistic EM-specific imagery.

Secondly, EM datasets are typically much smaller
(see Figure 1). This is due to the high cost, time-consuming
nature, and specialized expertise required for both image
acquisition (e.g., expert instrument setup) and precise an-
notation. This data scarcity directly challenges the applica-
bility of large-scale diffusion models, which conventionally
rely on vast training corpora.

Thirdly, FIB-SEM datasets for semantic segmentation
mostly originate from image stacks [, 7, 13, 37], and hence
exhibit limited variance. Individual images within a stack
often show minimal differences, leading to high correla-
tion. This low variance can hinder standard augmentation
techniques, which might inadvertently distort the underly-

ing data distribution, potentially misdirecting model capac-
ity. Conversely, training a generative model offers a unique
opportunity to learn directly from this underlying distri-
bution, enabling the synthesis of new, varied samples that
remain faithful to the domain’s inherent statistical proper-
ties. Within our work we focus on these common low-
variance datasets and leverage FIB-SEM data from [37] (de-
tails see subsection 4.1).

4. Method
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Figure 2. The method of our work: We finetune ControlNet on
a small EM dataset with segmentation masks. We then use the
trained ControlNet to generate a set of synthetic images, which
we use for enhancing the real dataset for training a downstream
segmentation model (U-Net).

Our approach focuses on adapting a pre-trained Con-
trolNet model with a frozen Stable Diffusion backbone,
pretrained on natural images, for the synthesis of realis-
tic, label-consistent FIB-SEM images, specifically target-
ing data augmentation for semantic segmentation tasks with
scarce data (see Figure 2). This section details the dataset,
training strategy, image generation and downstream model
training process employed in our work.

4.1. Dataset

EM Image

Segmentation Mask

Figure 3. Representative samples from the dataset along with their
corresponding color-coded segmentation masks used to condition
ControlNet. The visual consistency across samples highlights the
low variability within the dataset.

We utilize a FIB-SEM dataset [37] for training and eval-
uating both ControlNet and downstream segmentation mod-
els. To generate this dataset, embedded cells were mounted
in a scanning electron microscope (SEM) equipped with a
focused ion beam (FIB). The FIB sequentially removes thin
layers from the sample, and after each ablation, the newly



exposed surface is imaged using the SEM. Repeating this
process hundreds of times yields a series of high-resolution
images that can be reconstructed into a three-dimensional
(3D) volume [43].

Each image has a resolution of 896 x 512 pixels and
is annotated with three semantic classes: Background, Cy-
toplasm, and Nucleus (see Figure 3). The dataset of real
EM images was partitioned into training, validation, and
test sets, comprising 233, 25, and 65 images, respectively.
Notably, the validation and test sets contain only real EM
images to ensure an unbiased evaluation of model general-
ization. All data augmentation and enhancement methods
were applied solely to the training set.

4.2. ControlNet

We leverage the ControlNet framework as introduced by
Zhang et al. [48]. For our experiments, we utilize the
pre-trained Stable Diffusion [32] 1.5 backbone, which has
demonstrated remarkable capabilities in generating high-
quality natural images.

A primary challenge in applying a natural image-trained
backbone to EM data is the domain shift represented in the
image dimensions: Stable Diffusion models typically op-
erate on 3-channel RGB images, whereas EM images are
inherently grayscale (single channel). To address this, and
to limit the amount of changes made to the model itself, we
adapted our single-channel EM images by replicating the
grayscale channel three times to create a pseudo-RGB im-
age, thereby matching the expected dimension of the Stable
Diffusion 1.5 backbone. This straightforward approach al-
lows the pre-trained model to process EM images without
architectural modifications to its core components.

4.2.1. Conditional Control with Semantic Segmentation
Masks

To enable the generation of label-consistent synthetic im-
ages for semantic segmentation, we follow the conditional
training strategy for ControlNet using color-encoded se-
mantic segmentation masks, as described in the original
work [48]. Given our dataset’s three distinct biological
classes (for details see subsection 4.1), we encode each
class within a specific channel of a 3-channel RGB mask:
the first class is encoded in the Red channel, the second
in the Green, and the third in the Blue channel. While
this allows for three primary class representations, it’s cru-
cial to understand that the RGB format itself can encode a
multitude of colors by blending these channels, thereby en-
abling the representation of more than three distinct classes,
hence allowing the method to be extended to a multitude
of classes. This explicit encoding provides direct, struc-
tural cues to the ControlNet model, guiding the generative
process to produce images that precisely correspond to the
provided segmentation map. The ability to condition gen-
eration on semantic information is paramount for creating

valuable synthetic image-label pairs for downstream seg-
mentation model training.

4.2.2. Textual Prompts for Domain Guidance

Beyond structural conditioning, textual prompts play a vi-
tal role in steering the generative process, especially when
adapting models from natural to specialized domains. For
each training data point, a random prompt is selected from
a predefined list of 37 unique descriptions pertaining to var-
ious cellular components and structures observed in EM.
These text prompts were meticulously formulated based on
representative images within our EM dataset. An itera-
tive process of adjustment was undertaken by testing these
prompts with the non-fine-tuned Stable Diffusion backbone,
ensuring that they provided a reasonable starting point for
further fine-tuning. Care was taken to formulate prompts
that describe structures and color values as closely as pos-
sible to the target EM data, even prior to fine-tuning (exam-
ples see Figure 4 Epoch 0).

During this preliminary phase, we identified a significant
domain gap: the general-purpose Stable Diffusion back-
bone, even when guided by textual prompts, frequently gen-
erated images resembling conventional SEM. These SEM-
like outputs primarily depicted surface-level structures of
the samples — visual characteristics that align more closely
with natural images. In contrast, our dataset consists of
FIB-SEM images, which visualize internal cellular struc-
tures markedly different from natural image distributions.

This discrepancy is qualitatively illustrated in Figure 4
(Epoch 0), where the generated output exhibits typical
SEM-style surface textures rather than the expected cross-
sectional views seen in FIB-SEM. These observations high-
lighted the need to fine-tune ControlNet specifically for this
domain to bridge the pronounced visual mismatch and en-
able faithful reproduction of the internal structures charac-
teristic of FIB-SEM imaging.

4.2.3. Synthetic Data Generation

After fine-tuning ControlNet on our small dataset, we gen-
erate a set of synthetic EM images for data augmentation.
This generation process mirrors the conditional setup used
during training: real segmentation masks from our dataset,
encoded as RGB images, serve as the primary structural
conditioning input. For each generated image, a text prompt
is randomly sampled from the same pool of 37 prompts used
during the fine-tuning phase. This ensures that the gener-
ated synthetic data benefits from both the explicit structural
guidance of the segmentation mask and the general textu-
ral and semantic cues embedded in the learned prompt rep-
resentations, facilitating the creation of diverse yet label-
consistent EM imagery.
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Figure 4. Training progression of ControlNet. Initially, the model is unable to generate realistic FIB-SEM images, but it gradually
converges toward increasingly accurate and realistic representations as training progresses.

4.3. U-Net Training for Semantic Segmentation

To evaluate the efficiency of our ControlNet-generated syn-
thetic EM images, we proceed with training a standard U-
Net model [33] for semantic segmentation. We construct
the final training dataset by combining varying proportions
of real EM images with the newly generated synthetic im-
ages. During training, we explore various scenarios by mix-
ing different proportions of real and synthetic data. The spe-
cific configurations and mixing ratios are detailed in Sec-
tion 5.2, where their impact on segmentation performance
is thoroughly analyzed. Crucially, to ensure an unbiased
evaluation of the model’s generalization capabilities, both
the validation and test sets consist exclusively of real, un-
modified EM images.

As further baseline, we compare our approach against
standard data augmentation techniques commonly used in
biomedical imaging, including random rotations, flips (hor-
izontal and vertical), shifts, and noise addition. Interest-
ingly, we observed that only random rotations led to per-
formance improvements. We attribute this to the nature
of our dataset: similar to many other semantic segmen-
tation datasets in EM [37], it is derived from a 3D vol-
ume, resulting in limited intrinsic variation. Consequently,
strong augmentations can introduce unrealistic distortions
that degrade performance. Through empirical testing, we
found that applying random rotations within the range of
[—16°,16°] yielded the best results. We refer to this con-
figuration as “Standard Augmentations” in the remainder of
the paper.

4.4. Training Details

This section outlines the specific configurations used for
training both the ControlNet model and the downstream U-
Net segmentation model.

ControlNet Training Our ControlNet model, built upon
the Stable Diffusion 1.5 backbone, was trained for a total
of 600 epochs. An Adam optimizer was used with a fixed
learning rate of 1 x 10~°. The batch size during training was
set to 2. To enhance the robustness and generalization of the

fine-tuning process, standard data augmentation techniques
were applied to the training data. These included random
cropping, the addition of random Gaussian noise, and ran-
dom rotations.

U-Net Training As described above, the U-Net model,
used for evaluating the quality of the generated synthetic
data, was trained on combined datasets consisting of real
and ControlNet-augmented images. The U-Net was trained
for a maximum of 400 epochs, with an early stopping mech-
anism based on the convergence of the validation loss. The
learning rate was set to 0.001, and an Adam optimizer was
employed. A batch size of 512 was used for training the U-
Net. Model performance was evaluated on the unseen test
set using the mean Intersection over Union (mloU) metric.

5. Results
5.1. Qualitative Results

Qualitative inspection of the fine-tuned ControlNet revealed
that the model was able to accurately follow the spatial
structure defined by the input segmentation masks (see Fig-
ure 5), effectively differentiating and visualizing the nu-
cleus, cytoplasm, and background regions. This indicates
successful alignment with the conditioning input at a struc-
tural level.

However, our analysis also uncovered notable limita-
tions in the realism of the generated synthetic EM images,
which we attribute primarily to the domain gap between
ControlNet’s natural image-trained backbone and the spe-
cialized characteristics of EM imagery. While the model
faithfully reproduced high-frequency details along struc-
tural boundaries — such as sharp transitions between cyto-
plasm and background — it consistently failed to capture re-
alistic global contrast and internal textures. In particular, it
struggled to generate the intricate, high-frequency patterns
within segmented regions, such as the granular textures or
sub-organelle structures commonly observed in real FIB-
SEM images. These internal features are essential for hu-
man observers to assess the authenticity of EM images, yet
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Figure 5. Representative samples from the dataset, shown alongside their corresponding color-coded segmentation masks used to condition
ControlNet, and the resulting synthetic images. The visual consistency across samples (columns) highlights the low variability within the
dataset. Despite visible differences between real (row 1) and synthetic (row 3) data, our quantitative experiments demonstrate that the
U-Net can still extract valuable image features from the synthetic samples.

they were often missing or overly smoothed in the synthetic
outputs.

We hypothesize two main factors contribute to this limi-
tation. First, the latent-space representation used by the Sta-
ble Diffusion backbone — optimized for computational effi-
ciency — operates in a compressed domain. During the en-
coding and decoding steps of the Variational Autoencoder
(VAE), high-frequency information is likely suppressed or
lost, making the reconstruction of fine internal textures in-
herently challenging. Second, because the model was pre-
trained on large-scale natural image datasets, it lacks prior
exposure to the specialized visual features characteristic of
EM data. The fine-scale structures unique to EM simply do
not exist in its original training distribution.

5.2. Quantitative Results

To account for the small training data and hence the vari-
ances during the training process we train the U-Net three
times and report mean and standard deviation over their re-
sulting test mloU.

5.2.1. Experiment 1: Pure Synthetic Data

In our first experiment, we train the U-Net exclusively on
synthetically generated images (see Figure 5) and compare
its performance to a model trained solely on real images. To
ensure a fair comparison, both training sets are matched in
size, each containing 233 samples. As expected, the model
trained on synthetic data alone struggles to generalize to
real images, highlighting the persistent domain gap between
synthetic and real data (compare Table 1). However, despite
not being exposed to any real images during training, the
reported mloU indicates that the U-Net is still able to learn
and extract meaningful features from the synthetic data.

Method Dataset Size mloU
Real 233 74.6 +0.4
ControlNet 233 44.3 £0.4

Table 1. Comparison of U-Net performance when trained exclu-
sively on real versus synthetically generated images. While train-
ing on synthetic data alone results in lower performance due to the
domain gap, the reported mloU indicates that the model is still able
to extract meaningful features without exposure to real images.

5.2.2. Experiment 2: Dataset Augmentation

In our second experiment, we augment the training data
with varying proportions of ControlNet-generated images
and compare this setup to using standard augmentation
techniques. While the inclusion of ControlNet-augmented
data improves performance over training on real im-
ages alone, standard augmentations still outperform the
ControlNet-based approach. However, as more synthetic
images are added, this performance gap gradually narrows
(see Figure 6). This suggests that, although ControlNet may
not yet produce fully realistic EM images, the generated
data is sufficiently informative to approach the dataset’s sat-
urating performance.

5.2.3. Experiment 3: Data Generation Times

In our final experiment, we assess the efficiency of data
augmentation by factoring in generation time, while ex-
cluding ControlNet’s training time. Specifically, we use
the largest ControlNet-augmented dataset from subsubsec-
tion 5.2.2 and measure the time required to generate it. We
then use this same time budget to generate standard aug-
mentations, resulting in two datasets: 10,553 ControlNet-
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Figure 6. Comparison of segmentation performance using
ControlNet-generated data and standard augmentations. Control-
Net augmentations consistently outperform training on only real
data. Still, while standard augmentations initially outperform Con-
trolNet, the performance gap narrows as more synthetic data is
added, approaching the dataset’s saturation point.

augmented images and 34,825 standard augmented images.
Consistent with the findings from Experiment 2, standard
augmentations continue to outperform those generated by
ControlNet Table 2, however, only by a small margin.

Method Dataset Size mloU
Standard Augmentations 34,825 90.7 +0.1
ControlNet 10,553 90.0 +0.1

Table 2. Comparison of segmentation performance using Con-
trolNet and standard augmentations under equal generation time
constraints. Despite a smaller dataset size, ControlNet-augmented
data approaches the performance of standard augmentations,
which still hold a slight advantage.

6. Conclusion

In this work, we successfully demonstrated the potential
of fine-tuning ControlNet, based on a natural image back-
bone, to generate label-consistent synthetic FIB-SEM im-
ages from very small, low-variance datasets. Our synthetic
data significantly boosted the performance of a downstream
U-Net segmentation model, achieving results comparable to
those obtained with standard augmentation techniques and
yielding an impressive improvement of up to +15.4 mloU
compared to training without any augmentations. Impor-
tantly, standard augmentations should not be seen as com-
petitors, but rather as complementary techniques that can
be combined with diffusion-based augmentation for even
greater benefit. This underlines the potential of ControlNet
to enhance even low-variance datasets with domain gaps,
despite its backbone being originally trained on natural im-
ages.

However, we identified limitations, particularly Con-
trolNet’s struggle to capture realistic contrast and high-
frequency internal patterns within segmented regions, likely
due to the inherent domain gap and the latent space com-
pression of its pre-trained backbone. While current stan-
dard augmentations still offer a more effort-efficient path
to similar performance, our study highlights ControlNet’s
substantial, as-yet-unrealized potential.

Future work will focus on optimizing conditioning
strategies, such as combining segmentation masks with ex-
plicit edge maps, to guide the model in generating more
realistic internal textures. Specifically, this refers to cap-
turing the fine-grained structures within segmented regions
(e.g., within a nucleus), which current outputs often ren-
der as overly smooth. We also believe that fine-tuning or
pre-training the core generative backbone directly on large
EM datasets could significantly alleviate the observed do-
main gap. Ultimately, our findings underscore the viability
of leveraging powerful generative models to artificially en-
hance scarce scientific datasets, paving the way for more
robust deep learning applications in domains like EM.
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