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ABSTRACT
Explainable AI (xAI) is becoming increasingly important as the need for
understanding the model’s reasoning grows when applying AI models in high-risk
areas. This is especially crucial in the field of medicine, where decision support
systems are utilised to make diagnoses or to determine appropriate therapies. Here it
is essential to provide intuitive and comprehensive explanations to evaluate the
system’s correctness. To meet this need, we have developed Proto-Caps, an
intrinsically explainable model for image classification. As an explanation, it provides
visual prototypes that resemble specific appearance features. These characteristics are
predefined by humans, which on the one hand makes them understandable and on
the other hand leads to the model basing its decision on the same features as the
human expert. On two public datasets, this method shows better performance
compared to existing explainable approaches, despite the additive explainability
modality through the visual prototypes. In addition to the performance evaluations,
we conducted an analysis of truthfulness by examining the joint information between
the target prediction and its explanation output. This was done in order to ensure
that the explanation actually reasons the target classification. Through extensive
hyperparameter studies, we also found optimal model settings, providing a starting
point for further research. Our work emphasises the prospects of combining xAI
approaches for greater explainability and demonstrates that incorporating
explainability does not necessarily lead to a loss of performance.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Neural
Networks
Keywords Capsule network, Explainable AI, Prototype learning, Medical image classification

INTRODUCTION
Deep learning has emerged as a powerful tool in computer vision, excelling in tasks such as
object detection, segmentation, and classification. Deep neural networks have the potential
to be useful in various domains, including economics, banking, automotive driving, and
medicine. They can be employed for decision-making or automation, thereby facilitating
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and improving processes (Secinaro et al., 2021). When artificial intelligence systems are
used in high-risk areas such as medicine, they need to be carefully evaluated to ensure their
safety and to gain trust of users (Rudin, 2019; Davenport & Kalakota, 2019). As the variety
of input data cannot be fully covered by test data sets, accuracy tests can only provide
limited assurance (Liang et al., 2022; Daneshjou et al., 2021).

Particularly in medical applications, there can be significant variations in the
characteristics of a pathology or imaging, such as differences in equipment between
manufacturers (Cohen et al., 2020; Pooch, Ballester & Barros, 2020). An alternative way of
validation is to disclose the reasoning criteria of the AI model (Leichtmann et al., 2023). If
an AI model justifies its decision in a similar way to a physician as human expert, it appears
trustworthy (Gallée et al., 2024). However, deep neural networks, also known as black
boxes, contain complex data processing steps that are difficult to interpret (Castelvecchi,
2016; Rudin, 2019; Gallée et al., 2023). This difficulty has led to the development of the
research field of Explainable AI, which encompasses the development of methods to
represent the internal decision-making processes of deep learning models in a way that is
understandable to humans.

One approach to model interpretability is the use of post-hoc methods, which are
applied after training of the primary models. These can be either model-agnostic
procedures, which examine the model independently of its architecture, or model-specific
techniques that leverage the model’s unique characteristics (van der Velden et al., 2022;
Murdoch et al., 2019). While flexible and applicable across various models, post-hoc
methods may not fully capture the model’s internal decision-making process, and the
generated explanations might not align with the model’s true behavior. Alternatively,
intrinsically explainable deep neural networks integrate explanations directly into the
model, eliminating the need for post-hoc analysis (Chen et al., 2019; Gallée et al., 2023).
While these models provide more transparent insights, they can suffer from trade-offs,
such as increased model complexity. Thus, while post-hoc methods offer flexibility and
broader applicability, intrinsically explainable models tend to provide more accurate,
aligned explanations at the cost of other trade-offs. The choice between these approaches
depends on the specific needs of the application, including the balance between
interpretability and model complexity.

This also applies to the method Proto-Caps (Gallée, Beer & Götz, 2023), analyzed in this
work. It combines domain knowledge with prototype learning. The diagnostic criteria used
by radiologists serve as domain knowledge and are referred to as attributes. These
attributes are visual characteristics that are essential for classifying a target, such as a
medical diagnosis. Unlike existing methods that either compute attribute scores or learn
target prototypes, Proto-Caps merges both approaches into attribute prototypes with
scores. The advantage of these over target prototypes is that the attribute prototypes
specifically represent individual attributes and validate the attribute scores.

Technically, the decision-making process is modeled hierarchically, similar to human
reasoning. First, a capsule network learns the attributes. These capsules then serve as the
core basis for target prediction. In a broader sense, the model first learns visual criteria and
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then infers the disease from them. Additionally, the prototypes are derived from the
attribute-specific capsules.

This article builds on previous work presented at the 2023 MICCAI Conference (Gallée,
Beer & Götz, 2023) where we introduced Proto-Caps. The most important aspects of our
original contribution include the following:

. We presented a learning algorithm that bases target prediction on attribute-specific
prototypes. The prediction is explained with real image examples of these prototypes.

. An evaluation on the LIDC-IDRI dataset for the classification of malignancy of lung
nodules showed a higher performance than other explainable methods and a comparable
performance to non-explanatory methods.

After demonstrating the methodological feasibility, this article elaborates on the model
analysis and provides insights into the information processing of the model. The
extensions to the original work can be summarized as follows:

. Explainability: We analyze the trustworthiness of the explanations and incorporate
feedback from target users.

. Validation:We extend the performance evaluation to a second medical data set and in a
three-dimensional environment.

. Prototype Analysis: We examine the model prototypes for their diversity, which gives
an indication of the quality of local explainability.

. Robustness: We also analyze the robustness of Proto-Caps with respect to the
architectural parameters and provide recommendations for hyperparameters for further
research.

RELATED WORK
This work combines two modalities of explainability to realize the concept of visual
prototypes that are understandable to humans. Capsule networks offer an architecture that
closely resembles the hierarchical decision-making process of humans. They base the
evaluation of an object on learned and specifiable features. On the other hand, we employ a
prototype learning strategy to learn feature-specific prototypes that can be used for
fine-grained analysis of a model prediction.

Prototype learning
Prototype learning can enhance model performance across various tasks—including
unsupervised domain adaptation, few-shot learning, and reducing catastrophic forgetting
in capsule networks (Pan et al., 2019; Sun et al., 2019; Snell, Swersky & Zemel, 2017).
Furthermore, example-based approaches have long provided intuitive tools for
interpreting neural network decisions, thereby advancing the field of explainable AI (Bien
& Tibshirani, 2011; van der Waa et al., 2021). Global and local explanations of an AI model
can be achieved by finding representative examples. Global explanations can be obtained
by identifying examples that represent a cluster of a class and best separate the samples
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according to their classes. Local explanations can be provided by identifying a prototype
that is closest in terms of model features to a sample to be classified (Barnett et al., 2021).
While global model-explanatory approaches are valuable during model development and
for a general overview, local, or case-based explainability provides a sample-specific answer
to why the model made its decisions.

By combining explanation by attention learning strategies (Zhou et al., 2016; Zheng
et al., 2017) and prototypes, Chen et al. (2019) attracted great attention with prototype-
explanation. They introduced a model that provides region-wise prototypes. The
specification of the explanations to individual image regions increases their quality, as they
are similar to the human intuition of image description. However, despite identifying
specific regions, the method does not clarify why the selected prototype is considered
similar to that region, leaving an important aspect of interpretability unaddressed.

Also in medical applications, prototypes are often integrated into model architectures to
enhance performance (Wang et al., 2024; LaLonde, Torigian & Bagci, 2020) or improve
interpretability (Hesse & Namburete, 2022; Wolf, Pölsterl & Wachinger, 2023; Li et al.,
2018). Typically, these methods employ class-specific prototype learning and often
generate synthetic images as prototypes. In contrast, our approach uses real samples from
the training dataset as prototypes, as in Chen et al. (2019), thereby avoiding unrealistic
prototype images. Most notably, our method distinguishes itself by employing
attribute-specific prototypes, which enable even finer-grained explanations for complex
vision tasks compared to traditional class-specific prototypes.

In addition to the feasibility evaluation, we would like to take up the point made by
Pathak et al. (2024) in this article and analyze the learned prototypes in more detail. A
comprehensive evaluation of prototype networks requires further analysis of the
prototypes to examine not only their performance but also their quality. Following this
need, we present experimental results on the truthfulness and diversity of the prototypes.

Privileged information in capsule network
Besides prototype learning, our approach utilizes a second method, which is based on the
capsule network architecture in combination with privileged information. Additional
domain expertise can enhance the trustworthiness of AI models (van der Velden et al.,
2022) by providing valuable information about the target objects. In computer vision, it is
particularly valuable to integrate and be able to predict the specific visual attributes that an
object fulfills for classification (Shen et al., 2019).

The capsule learning strategy, originally proposed by Sabour, Frosst & Hinton (2017),
represents an attention between encapsulated low and high-level features in a hierarchical
manner, similar to that of the human visual system. Capsule networks have been used in
various projects and have proven to be a high-performance backbone (Afshar,
Mohammadi & Plataniotis, 2018).

Our work follows a similar approach to that of LaLonde, Torigian & Bagci (2020) and
combines additional expert knowledge into capsule networks. They map encapsulated
features, which serve as the information base for target classification, to human-defined
high-level visual attributes. By predicting these attributes, this creates human
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understandable explainability. However, these attribute scores lack validation, which our
approach fulfills with attribute-specific visual prototypes.

METHODS AND MATERIALS
Datasets
For the evaluation of our method, we used two medical benchmark datasets selected for
their detailed annotations, including target classifications and attribute labels. Since our
approach predicts the target based on these attributes—its decision criteria—these datasets
effectively represent the problem we aim to solve.

Dataset 1: lung nodule classification

The Lung Image Database Consortium and Image Database Resource Initiative (LIDC-
IDRI) dataset (Armato et al., 2015) is a comprehensive collection of computed tomography
(CT) scans, annotated by expert radiologists, with the primary focus on lung nodule
detection and characterization (Armato et al., 2011). The annotations contain detailed
information on the medical assessment and visual appearance of pulmonary nodules. Each
scan was reviewed by up to four radiologists. Identified lung nodules were segmented and
annotated with a malignancy rating and visual attributes. The malignancy rating ranges
from 1-highly unlikely to 5-highly suspicious. The visual appearance is described by the
attributes subtlety (difficulty of detection, 1-extremely subtle, 5-obvious), internal structure
(1-soft tissue, 4-air), pattern of calcification (1-popcorn, 6-absent), sphericity (1-linear, 5-
round), margin (1-poorly defined, 5-sharp), lobulation (1-no lobulation, 5-marked
lobulation), spiculation (1-no spiculation, 5-marked spiculation), and texture (1-non-solid,
5-solid).

Preprocessing for this dataset involves ignoring lung nodules smaller than 3 mm and
those identified by less than three radiologists. In the case of 2D processing the lung
nodules were cropped out of the volumes with the minimum square bounding box and the
slices were resized to 32� 32, as in previous work (LaLonde, Torigian & Bagci, 2020).
Considering each annotation and slice as a sample, the preprocessing results in a total of
27,379 samples. For 3D processing, a fixed depth was chosen with a centered bounding
box, resulting in a volume size of 32� 32� 16, according to existing work (Mehta et al.,
2021). Considering each annotation as a sample, the preprocessing results in a total of
4,318 samples. Preprocessing was performed with the pylidc framework (Hancock &
Magnan, 2016).

Each sample comes with the individual annotator’s segmentation, while the target and
attribute labels take into account the annotations of all annotators, as in previous work
(LaLonde, Torigian & Bagci, 2020). For the nodule’s attribute score the mean value of the
radiologists’ scores is used. The target ground truth is represented with the distribution of
the annotated malignancy scores.

Experiments with this dataset were performed using 5-fold stratified cross-validation,
with a patient-wise split and using 10% of the training data for validation.
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Dataset 2: lung abnormality classification
As second dataset to validate the proposed method we chose the CheXpert dataset which
contains 224,316 chest radiographs of 65,240 patients (Irvin et al., 2019). In this dataset the
testing set includes labels which were obtained by expert radiologists, whereas the training
labels were generated automatically from the associated radiology reports. In this work the
results from the CheXbert labeler (Smit et al., 2020) were used for the training labels.

The findings include positive, negative, uncertain, and unmentioned (blank) classes. In
our experiments we used binary attribute classes, considering unmentioned and negative
classes as class 0 and positive and uncertain as class 1. We considered all 13 provided
attribute classes which include enlarged cardiomediastinum, cardiomegaly, lung opacity,
lung lesion, edema, consolidation, pneumonia, atelectasis, pneumothorax, pleural effusion,
other pleural, fracture, and support devices. The binary target classes used were the
absence (0) or the presence (1) of one or more of the attribute findings.

Considering only samples with a frontal projection the total number of data samples is
191,229. Preprocessing includes the resizing of the images to a size of 64� 64. The train
and test split was adopted as defined in the dataset.

In contrast to the LIDC-IDRI dataset, the CheXpert dataset lacks segmentation masks,
which is why the segmentation branch of the proposed method is disabled by excluding the
respective term in the loss function.

Method
Model
The architecture comprises an encoder and several branches stemming from the output of
the encoder, similar to previous work (LaLonde, Torigian & Bagci, 2020). The encoder is a
capsule network consisting of convolutional layers that produce latent capsule vectors.
These vectors serve as input to multiple heads that predict the target, attribute scores and
prototypes, as well as a ROI mask.

The capsule vectors represent different features that have been extracted from the input
image. Each feature is mapped to a single predefined attribute using supervised learning.
This combination of the encapsulated feature representation and attribute mapping
enables a truthful and human-understandable description of the decision process.
Furthermore, the capsule information is used to generate attribute-specific prototypes that
determine the attribute scores during inference and provide visual examples.

Referring to Fig. 1, the model can be divided into individual sections: The capsule values
are calculated by the backbone, which is then followed by an attribute head, target head
and segmentation head. The prototype branch extends the model by learning
attribute-specific visual prototypes.

The backbone extracts features from the input image data and implements a capsule
attention mechanism. Firstly the input data is processed by a convolutional layer
containing 256 kernels of size 9 followed by a ReLU activation. A subsequent primary
capsule layer applies another convolutional layer with 256 kernels of size 9 and segregates
the resulting features in separate low level feature capsules. A final dense layer implements
the dynamic routing algorithm (Sabour, Frosst & Hinton, 2017) in an iterative manner,
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resulting in 16-dimensional capsule vectors and forming the starting point for the
following prediction branches.

The target head concatenates the capsule vectors and applies a fully connected layer.
The output dimension is selected based on the label representation. For the LIDC-IDRI
dataset, which has a distribution of five labels, the output dimension of the linear layer is
five, followed by a softmax activation. For binary class labels, as in the CheXpert dataset,
the output dimension is one with a sigmoid activation function.

The segmentation head decodes the capsule features to a mask of the Region of Interest.
The idea of learning this optional branch is an attention of the object to classify. The
capsule vectors are concatenated and processed by two fully connected layers with 512 and
1,024 output features and ReLU activation. A final linear layer completes the upsampling
and creates an output image of the same size as the original image and is followed by a
sigmoid activation.

The attribute head implements the specialization of the capsules on individual,
human-understandable attributes. Each capsule vector is processed by a separate linear
layer and sigmoid activation to fit a respective attribute score.

Figure 1 Proto-Caps (here in 2D) is based on a capsule network. TRAIN(): The capsule vectors are
processed with four branches to optimize in regards of the attributes, target and segmentation mask
(optional), and to learn prototype clusters. Prototype PUSH(): For each prototype vector of an attribute
the sample from the training dataset with the smallest distance is saved. Here, prototypical images for the
attribute sphericity are pushed, which have different degrees of roundness (from 0: linear to 3: circular).
INFERENCE(): For each capsule vector, the closest prototype vector is found, leading to the attribute
score and image. The closest prototype vectors also form the basis for the subsequent target prediction
branch. Full-size DOI: 10.7717/peerj-cs.2908/fig-1
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The prototype branch contains multiple sample vectors for each capsule that eventually
become feature vectors of prototypical samples during the training. For each attribute
value, a fixed number of prototypes are available to represent the visual variety of
characteristics. The prototype vectors map real image samples and are visualized during
inference.

The code of Proto-Caps is publicly available at https://github.com/XRad-Ulm/Proto-
Caps. Algorithm 1 depicts the training and inference phases, described in the following.

Training phase 1—feature extraction
At the beginning of the training, the model is optimized in solely respect of the training
labels. The clustering of the prototypes is disabled at this stage. This step-wise approach
allows for a prioritized focus on feature extraction.

In this first training phase, the network is optimized using the following combined loss
function given the training labels.

LP1 ¼Ltar þLattr þ kseg �Lseg (1)

The target loss Ltar refers to the target label and has been selected depending on the
format of the label. In case of a distribution of the target annotations, as in the LIDC-IDRI
dataset, the pointwise Kullback-Leibler divergence was used to reflect the inter-observer
agreement and thus uncertainty (LaLonde, Torigian & Bagci, 2020). In the case of binary
classification, as in the CheXpert dataset, a binary cross-entropy loss is applied.

Ltar ¼ Ytar � log Ytar

Ŷ tar
ðLIDC� IDRI datasetÞ

Ltar ¼ BCEðYtar; ŶtarÞ ðCheXpert datasetÞ
(2)

The attribute lossLattr is based on the error between the ground truth attribute score Ya

and the network prediction Ŷa for the a-th attribute:

Lattr ¼ b � 1
A

XA
a

Ya � Ŷa

�� �� ðLIDC� IDRI datasetÞ

Lattr ¼ b � 1
A

XA
a

BCEðYa; ŶaÞ ðCheXpert datasetÞ
(3)

If the attribute scores are continuous, as in the LIDC-IDRI dataset the mean square
error is applied, else if the attribute scores are binary, as in the CheXpert dataset, a binary
cross-entropy loss is applied. The random binary mask b can be used to control from
which training sample the attribute annotations are used and from which not, allowing
semi-supervised attribute learning. This version was investigated in case attribute labels are
only available for part of the training dataset (see Section “Sparse Data Study”).

The segmentation loss Lseg is used when the dataset includes segmentation masks of the
region of interest. By incorporating this loss term the segmentation branch of the model is
activated with the mean square error between the reconstructed and the ground truth
mask.
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Lseg ¼ Ymask � Ŷmask

�� �� (4)

The hyper-parameter kseg ¼ 0:512 was chosen according to LaLonde, Torigian & Bagci
(2020).

Training phase 2—training prototypes

After the warm-up phase, the randomly initialized prototype vectors are being unfrozen
and trained to represent cluster centers for the differen attribute manifestations. Motivated
by existing work about prototype learning (Chen et al., 2019), the combined loss function is
being extended by two terms, defined as a cluster lossLclu and a separation lossLsep. The
cluster loss reduces the Euclidean distance between the capsule vector~ca and the nearest
prototype~pa;p of the correct attribute score in Pas .

Algorithm 1 Algorithm of proto-caps.

~ca: capsule vectors a ¼ 1;…;A

~C: concat. of capsule vectors ~C ¼ ð~c1;~c2;…;~cAÞ
mbranchðinputÞ: process input with layer(s) of branch

TRAIN()

Ŷa  mattributeað~caÞ
Ŷtarget  mtargetð~CÞ
Ŷmask  msegmentationð~CÞ
IF epoch < warmup:

BACKPROPAGATEðLP1Þ
ELSE:

BACKPROPAGATEðLP2Þ
every ðpushstepÞth epoch:

PUSH()

~pa;p: prototype vectors p ¼ 1;…; nP

PUSH()

Iterate over N training samples:

Calculate distance jj~ca �~pa;pjj
For each prototype vector, save closest training sample

INFERENCE()

~Cproto  ð~p 1;p1 ;~p 2;p2 ;…~pA;pAÞ, where pi is index of

closest~pa;p for each a

Ŷa  pa;pa (attribute score of closest prototype)

Ŷtarget  mtargetð~CprotoÞ
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Lclu ¼ 1
A

XA
a

min
~p a;p2Pas

~ca �~pa;p�� ��
2
: (5)

On the other hand the separation loss increases the distance between the capsule vector
and prototypes, that are dedicated to other attribute scores, limited by a maximum
distance:

Lsep ¼ 1
A

XA
a

min
~p a;p

=2Pas
maxð0; distmax � ~ca �~pa;p�� ��

2
Þ: (6)

The overall loss function for the second training phase is the following weighted sum,
where the separation factor ksep ¼ 0:1 was chosen empirically:

LP2 ¼Ltar þLattr þ kseg �Lseg þLclu þ ksep �Lsep (7)

For a visual representation of the optimized prototype vectors with real sample images,
training samples are pushed onto the prototype vectors. Two approaches of this push
operation were examined. The first approach includes to find the sample with the smallest
distance for each prototype vector and save it with the original image and the ground truth
information. The second approach, which is similar to existing work about prototype
learning (Chen et al., 2019) additionally involves replacing the prototype vector with the
vector generated by this real sample.

The repetition rate of this operation is set by the hyper-parameter pushstep.

Inference phase—predict from prototypes
During inference, the prediction of the attribute and target scores is based on the sample
prototypes. Firstly, the prototype vectors that are closest to the capsule vectors are
determined. The attribute prediction is set to the attribute label of the corresponding
closest prototype. The trained attribute layers are ignored in the inference phase. For the
target prediction, the prototype vectors are concatenated and processed by the prediction
layer.

EXPERIMENTS AND RESULTS
Model parameters
The model layers were optimized using an Adam optimizer with a learning rate of 0:02.
The iterative dynamic routing algorithm was implemented in three iterations. Training
phase 2, where the prototypes are learned, starts after the warm-up phase. The warm-up
phase consists of 100 epochs for the LIDC-IDRI dataset and of one epoch for the CheXpert
dataset. The push operations repetition rate was set to pushstep ¼ 10 for the LIDC-IDRI
dataset and to pushstep ¼ 1 for the CheXpert dataset. In preliminary studies, we initiated
the warm-up phase once the lossLP1 had converged. We also selected the hyperparameter
pushstep by balancing training time with the stabilization of individual loss components.

With a maximum of 1,000 epochs, but stopping early if there was no improvement in
the mean of target and attribute accuracy within 10 push steps, the experiments lasted an
average of 3 h on a GeForce RTX 3090 graphics card for the LIDC-IDRI dataset in the 2D
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setting. The 3D LIDC-IDRI experiments took an average of 14 h due to the larger memory
requirements of the prototypes. The CheXpert experiments took longer per epoch due to
the larger size of the input and dataset, and training was stopped early after 48 h.

The number of capsules used in the architecture was chosen in relation to the number of
attributes, i.e., eight capsules for the LIDC-IDRI dataset and 13 capsules for the CheXpert
dataset.

Explainability
Proto-Caps is a xAI method that is explainable by design. Unlike post-hoc explainable AI,
which requires a second algorithm to provide explanations, this intrinsically explainable
method offers interpretability within the inference process.

The network uses the closest prototypical vectors to calculate attribute and target
predictions. These vectors are linked to data samples from the training dataset. This allows
for the visualization of prototypes with real images to validate the prediction results.
Figure 2 illustrates the use of generated attribute prototypes to explain the model
prediction.

Figure 2 presents three example cases (A, B, and C), each shown in a separate row. Case
A demonstrates a correct target prediction (malignancy), while Cases B and C highlight
incorrect predictions. To explain the model’s decision, prototypes for three attributes
(margin, lobulation, and spiculation) are shown. Since the target prediction is based on
these attribute prototypes, the reasoning behind the model’s decision can be expressed as
follows: “The model predicted malignancy 4 because the detected features in the input
image closely resemble this prototype for the attribute margin, and this prototype for the
attribute lobulation, etc.”. This interpretability allows for result validation: if discrepancies
are observed between the input image and the retrieved prototypes, it may indicate
potential model errors. Such insights can help identify cases where the prediction should
be questioned.

Faithfulness

The following experiments investigate the extent to which the explanations reflect the
model’s decision.

In the first experiment we analyzed the correlation between attributes and target
correctness using a post-hoc logistic regression study: Based on the correctness of the
attribute prediction, the correctness of the target prediction was calculated. The result on
the LIDC-IDRI dataset shows a strong relationship between both with a prediction
accuracy of 94.1% /1.1.

In the second experiment we analyzed the joint feature importance for the combined
task in order to gain insights about the information flow within the network. The
explainability of Proto-Caps relies on the capsule vectors as a foundation for decision-
making. These are used to derive the attribute scores and also to classify the target. To
ensure the trustworthiness of the explanations, we used the LIDC-IDRI dataset to analyze
whether the information was shared across the multidimensionality of the capsule vectors
for this combined task.
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The joint information is derived from the weights w of the linear layer of each attribute
and the target prediction. The layer input values are used to standardize the weights w0. To
achieve this, the capsule vectors z for the test data set are first standardized:

z0 ¼ z � ~z
rz

(8)

The standardized weights are calculated using the linear function:

y ¼ z � w ¼ z0 � w0 (9)

The correlation functions are calculated from each attribute layer w0iattr and the
respective weight values of the target layer w0itar:

corriP ¼ Pearsonðjw0itarj; jw0iattrjÞ (10)

corriS ¼ Spearmanðjw0itarj; jw0iattrjÞ (11)

The mean correlation over the eight attribute capsules and five target classes for the
LIDC-IDRI dataset is with the Pearson calculation 0.62 and with Spearman 0.54. These
values show a moderate to strong correlation.

The experiments show that the model’s decision making process is largely driven by the
attribute explanation.

User-centered evaluation

In addition to the technical investigation of the explanations, we conducted a
user-centered evaluation of the attribute explanations provided by Proto-Caps

Figure 2 Validation of the malignancy prediction. One correct and two wrongly predicted examples
with attribute prototypes. Prediction by and ground truth label y of malignancy and attribute respectively.
Identifying false attribute predictions can help to identify misclassification in malignancy.

Full-size DOI: 10.7717/peerj-cs.2908/fig-2
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(Gallée et al., 2024). Six radiologists diagnosed lung nodules from the LIDC-IDRI dataset
in test scenarios while having access to the model output. For each case, three variants of
explanation were presented: (A) the malignancy prediction alone, (B) the prediction with
attribute scores, or (C) the prediction with both attribute scores and attribute prototypes.

The evaluation incorporated objective measures—such as the diagnostic accuracy of the
radiologists across the different model support variants—as well as subjective assessments
of trust and perceived helpfulness.

Figure 3 illustrates that the explanations provided by Proto-Caps are persuasive: when
the model prediction is correct, they lead to higher diagnostic accuracy, whereas in cases of
incorrect predictions, the explanations tend to increase the likelihood of an incorrect
diagnosis. Radiologists reported that the explanations aligned with their diagnostic criteria
and served as useful guidance during diagnosis.

To mitigate these negative effects, we suggest using Proto-Caps selectively—primarily
during development and testing—and, in practice, as a warning system that activates and
intervenes only when the model suspects a false negative diagnosis by the radiologist. For a
thorough discussion of the experimental design, survey methodology, and analysis of user
feedback, readers are referred to Gallée et al. (2024).

Performance
Evaluation metric
For the LIDC-IDRI dataset Proto-Caps is evaluated using the Within-1-Accuracy metric.
A prediction is considered correct if it falls within a tolerance of 1 score of the ground truth
label. As in previous work on the LIDC-IDRI dataset (LaLonde, Torigian & Bagci, 2020),
this metric is used for the ordinal labels of malignancy (ascending from 1-highly unlikely to
5-highly likely).

For the CheXpert dataset, where possible, AUC values are calculated as an evaluation
measure to compare the results of Proto-Caps with other studies. However, the calculation
by including prediction probabilities in the Proto-Caps evaluation is only possible for the
target classification, not for the attribute classification. This is due to the prototype-based
inference for the attributes. The predicted attribute classification is determined by the
ground truth scores of the closest prototypes.

Comparison with SOTA
We compare our proposed method with literature values of existing methods. For the
LIDC-IDRI dataset these include methods that predict either no attributes (non-
explainable) or some attributes (explainable). Table 1 displays the accuracy of the 2D
models, while Table 2 presents the accuracy of the 3D models.

The results show that Proto-Caps outperforms existing explainable approaches in
predicting both nodule malignancy and visual attributes. X-Caps (LaLonde, Torigian &
Bagci, 2020) in Table 1 is also a capsule-based architecture similar to Proto-Caps. It first
learns attributes and then predicts malignancy based on them. However, it does not learn
attribute prototypes.
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Table 1 2D Comparison with literature values of other works, attribute scores are reported if available. Mean l and standard deviation r
calculated from 5-fold experiments. Scores reported in Within-1-Accuracy. The best result is in bold.

Attribute Prediction Accuracy in % Malig-nancy

Sub IS Cal Sph Mar Lob Spic Tex

Non-explainable

3D-CNN+MTL (Hussein et al., 2017a) – – – – – – – – 90.0

TumorNet (Hussein et al., 2017b) – – – – – – – – 92.3

CapsNet (LaLonde, Torigian & Bagci, 2020) – – – – – – – – 77.0

Explainable

X-Caps (LaLonde, Torigian & Bagci, 2020) 90.4 – – 85.4 84.1 70.7 75.2 93.1 86.4

Proto-Caps (proposed) l 91.4 99.4 96.9 92.5 86.7 88.3 89.0 93.1 93.1

r 2.3 0.7 1.2 4.6 4.3 2.8 2.4 1.0 0.9

Figure 3 Gallée et al. (2024) analysis of the radiologists’ performance during the test cases. The green
boxplots depict diagnostic accuracy when the model prediction was correct, while the red boxplots show
accuracy when the model prediction was incorrect. Full-size DOI: 10.7717/peerj-cs.2908/fig-3

Table 2 3D Comparison with literature values of other works, attribute scores are reported if available. Mean l and standard deviation r
calculated from 5-fold experiments. Scores reported as Within-1-Accuracy, except forMehta et al. (2021), Afshar et al. (2020), Zhu et al. (2018), Shen
et al. (2019) reporting binary AUC (marked with asterix*), and binary ACC (marked with +) respectively.

Attribute prediction accuracy in % Malig-nancy

Sub IS Cal Sph Mar Lob Spic Tex

Non-explainable

CNN+Rand. Forest (Mehta et al., 2021)* – – – – – – – – 80.7

Deeplung (Zhu et al., 2018)+ – – – – – – – – 90.4

3D-MCN (Afshar et al., 2020)* – – – – – – – – 96.4

Explainable

HSCNN (Shen et al., 2019)+ 71.9 – 90.8 55.2 72.5 – – 83.4 84.2

3D Proto-Caps (proposed) l 92.5 99.8 98.2 96.7 93.9 93.1 93.2 95.3 94.3

r 3.7 0.2 1.2 2.1 2.2 1.7 2.5 1.3 1.7
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Compared to methods that do not implement attribute prediction for improved
explainability (3D-CNN+MTL, TumorNet, CapsNet), our method performs better in the
2D case. In the 3D case, as shown in Table 2, it is important to note that the data
preprocessing and evaluation metrics differ among the compared methods. Our proposed
method achieves a higher malignancy prediction accuracy in the 3D setting (2D: 93.1 vs.
3D: 94.3) as well as a better mean prediction accuracy for the eight attributes (2D: Ø = 92.2
vs. 3D: Ø = 95.3). These results demonstrate the methodological feasibility of Proto-Caps
on 3D data.

Proto-Caps also excels in the second validation dataset, CheXpert, in predicting
fractures, pneumothorax, pneumonia and lung lesions, but underperforms in other
attributes, see Table 3.

Hyperparameter evaluation
We analyzed various methodologically crucial parameters of the model to show which
parameters the model is sensitive to and to provide a starting point for future research with
the model. These parameters include the size of the prototype set per attribute, the
dimension of the capsule vectors, and the number of capsule vectors. Furthermore, we
conducted an investigation into variants of the prototype layer’s push operation. The
experiments were conducted on the LIDC-IDRI dataset.

Number of prototypes
In the following we present the results of the experiments where we used a different
number or prototypes that are initialized per attribute class. Besides the original setting
with 16 prototypes per attribute class, we tested 4, 32 and 64 prototypes per attribute class.
The results are summarized in Fig. 4 and in the following:

Accuracy: In terms of the target accuracy 93.4/1.2 (4) 93.1/0.9 (16), 92.9/1.4 (32), 93.4/
1.24 (64), and of the mean attribute accuracy 92.9/1.7 (4) 92.2/2.4 (16), 92.3/2.5 (32), 91.9/
3.6 (64), there is no advantage in using more prototypes.

Training time: When changing the number of prototypes, the survey of the training
time needs to be considered. No change in duration is detected during the weight
adjustment phase (18 s). However, one push operation of the prototypes takes
significantly longer the more prototypes are learned: 17 s (4), 37 s (16), 51 s (32), and
69 s (64).

Number of prototypes used in inference: This experiment analyzed the total number of
attribute prototypes actually used in the test dataset: 107/160 (4) 311/640 (16), 418/1,280
(32), and 569/2,460 (64).

Having a diverse set of prototypical samples used on the testing dataset increases the
quality of the local explainability meaning that the prototypes are adapted better on the
different manifestations within one attribute class. A small set of prototypes provides a
global explanation of the entire network, while a large number of prototypes offers a more
local explanation for each sample.

High target and attributes accuracies were achieved when using 4, 16, and 32 prototypes
per attribute class. As the average number of prototypes (16 per attribute class, i.e., 80 per
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attribute) reflects the variance of the appearance well, we recommend the use of 16
prototypes per attribute class.

Capsule vector dimension
This section of experiments explores the effect of the dimension of the attribute capsules.
The motivation for reducing the dimension is to reduce the number of learnable
parameters, which raises the prospect of a more generalized representation of the

Table 3 Comparison of the experiment on the CheXpert dataset with literature values of another
work. The evaluation metric used by Proto-Caps is the ACC for the attributes (marked with an aster-
isk), while it uses the area under the curve (AUC) as the performance metric for the target and for the
comparison work.

CheXGCN (Chen et al., 2020) Proto-Caps (proposed)

Attributes

Enlarged cardiomed. 69.7 48.0*

Cardiomegaly 87.7 74.8*

Lung opacity 82.2 69.8*

Lung lesion 76.8 99.5*

Edema 88.6 80.2*

Consolidation 78.4 84.2*

Pneumonia 81.0 96.0*

Atelectasis 73.6 70.8*

Pneumothorax 91.7 96.5*

PleuralEffusion 90.7 69.3*

Pleural other 83.5 99.5*

Fracture 83.3 100.0*

Support device 89.9 59.9*

Target (normal/abnormal) 87.9 87.4

Figure 4 Analysis in regards of the number of prototypes available per attribute score.
Full-size DOI: 10.7717/peerj-cs.2908/fig-4
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attributes. In addition to the original capsule setting of 16 dimensional vectors, dimensions
2, 4, 8 and 32 were tested.

Accuracy: In terms of the target accuracy 93.5/1.3 (2), 93.0/1.6 (4), 93.3/0.9 (8), 93.1/0.9
(16), 92.6/0.9 (32), and of the mean attribute accuracy 93.1/2.5 (2), 93.1/2.0 (4), 92.3/2.2
(8), 92.2/2.4 (16), 91.0/3.4 (32), the prediction accuracies are comparable.

Number of prototypes used in inference: Of the 640 available prototypes during
inference 181 (2), 265 (4), 330 (8), 311 (16), and 265 (32) were used.

Based on high prediction accuracy and the number of prototypes used, see Fig. 5, we
recommend a capsule dimension of 8 or 16, as similar results were achieved with both.

Number of capsules

In previous work (LaLonde, Torigian & Bagci, 2020), the number of capsules was set to the
number of attributes. This model architecture supports the idea that the target prediction is
based on the defined attribute capsules. Since one could allow the prediction to be based on
more than just the predefined attributes, we investigated how the model changes when the
model has more capsules. The model architecture is changed by adding additional capsules
that are used for the target prediction branch but are not followed by attribute prediction
layers. For this experiment, we tested the variants with 4, 8, and 16 extra capsules.

Accuracy: The target’s accuracy was 78.9/10.9 (+4), 90.4/1.1 (+8), and 89.0/3.8 (+16)
compared to the original accuracy of 93.1/0.9 (+0) when no additional capsules were used
besides the supervised attribute capsules. The mean attribute accuracy was 91.2/2.9 (+4),
92.2/2.4 (+8), and 92.0/2.3 (+16) compared to 92.2/2.4 with the original setting.

The results indicate a decrease in target accuracy and a reduced level of robustness
with the inclusion of additional capsules.

Push operation
In the following experiment on the LIDC-IDRI dataset, we compare two versions of the
push operation. This operation occurs during training phase 2, when the prototype branch
is being optimized. For each prototype vector, the push operation stores a real sample
image to which its capsule vector is closest.

In the first variant, which was used in the experiments above, the push operation does
not involve any additional steps.

In the second variant, which is based on the ProtoPNet prototype learning strategy by
Chen et al. (2019), the capsule vectors of the most similar image samples replace the
prototype vectors in the push operation. This additional step changes the learning progress
of the prototype vectors, as they are not only adapted by the loss function, but are also
replaced during the push operations.

The push variants were tested with the original capsule dimension of 16 and with 8.
It was observed that the training accuracy after the first push operation is higher with

the replacing-push method. By replacing the prototype vectors with real samples, they are
adapted faster initially, in contrast to the slow adaptation caused by only the change from
backpropagation.
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With the replacing-push method, the final accuracy for target prediction is 93.3/1.2 (16),
and for mean attribute prediction it is 92.5/2.4 (16) for the capsule dimension 16. For the
capsule dimension of 8 the target prediction accuracy is 90.5/2.1 (8) and the mean attribute
prediction accuracy is 92.9/1.7 (8).

When comparing accuracies, there are no differences between the proposed push
operation and the replacement-push variant, except for a lower target prediction accuracy
when using a capsule vector dimension of 8. We recommend using the proposed push
variant, where the prototype vectors are fitted through backpropagation with the
prototype loss function only.

Sparse data study
Our method creates prototypes that represent human understandable features. These
features are predefined and integrated into the model through training with attribute
labels. The supervised approach to attribute learning thus places particular demands on the
training dataset. In the case of a medical application, this implies a higher and therefore
also more costly annotation effort due to the necessity of medical expertise.

To increase the applicability of the proposed method to other datasets and reduce the
required annotation effort, we conducted tests using fewer attribute labels. For this
purpose, we trained the model using only the attribute annotations of a small fraction (10%
= 1,907 samples and 1% = 190 samples) of the LIDC-IDRI dataset. We used only the target
and segmentation labels for the remaining data samples. Table 4 shows that good results
can be achieved even with reduced availability of attribute annotations.

Additionally, we examined the behavior of target prediction accuracy when none of the
attribute labels are used, resulting in capsule vectors that are not mapped on
predetermined attributes. A similar test accuracy demonstrates that the additional
restriction of mapping defined features to capsule vectors has no negative impact on model
performance.

Figure 5 Analysis in regards of the dimension of the capsule vectors.
Full-size DOI: 10.7717/peerj-cs.2908/fig-5
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It was demonstrated that the proposed method can be successfully employed in the
absence of attribute labels. Although the prototype explanations are not defined more
precisely, they still resemble the recognized features.

DISCUSSION
We propose a deep neural network for image classification with a specialized architecture
that enhances human interpretability by enabling users to understand its information
processing. The network uses a hierarchical data process to establish truthful causality
between human-defined decision criteria and the final classification.

Validation with visual prototypes, which are specific in terms of distinctive, previously
defined features, mimics the decision-making process of humans, offering a logical
reasoning framework that increases trust in the model and helps identify misclassifications.
The strong correlation between misclassified attributes and target confirms the model’s
coherence.

Despite the extended explainability of our method, it does not compromise accuracy, as
demonstrated by comparisons with other studies. Experiments conducted on the
LIDC-IDRI dataset demonstrated that Proto-Caps outperforms existing explainable
methods and achieves similar results to non-explainable approaches. This establishes
Proto-Caps as a new state-of-the-art, incorporating all relevant attributes that human
experts deem important.

It is important to note that the datasets used come with inherent limitations. Zhang et al.
(2022) note that subjective radiologist assessments in the LIDC-IDRI database can
introduce label errors and supervision bias. Nonetheless, the dataset remains a large-scale
and widely used benchmark for lung cancer prediction. Additionally, Baltatzis et al. (2021)
highlight that data selection affects class distribution, an issue we mitigate by using the
same preprocessing as prior work (LaLonde, Torigian & Bagci, 2020; Smit et al., 2020). For
CheXpert, studies byGlocker et al. (2023) and Seyyed-Kalantari et al. (2020) reveal biases in
model performance across race and sex.

Table 4 Results of the sparse data study. Attribute annotations were used from a fraction of the
training dataset. Mean l and standard deviation r calculated from 5-fold experiments. Scores repor-
ted as Within-1-Accuracy.

Attribute prediction accuracy in % Malignancy

Sub IS Cal Sph Mar Lob Spic Tex

100% attribute labels l 91.4 99.4 96.9 92.5 86.7 88.3 89.0 93.1 93.1

r 2.3 0.7 1.2 4.6 4.3 2.8 2.4 1.0 0.9

10% attribute labels l 94.1 99.8 96.5 96.9 93.0 92.1 90.7 93.9 92.7

r 1.5 0.3 0.9 1.4 1.2 2.6 1.6 2.4 1.5

1% attribute labels l 95.6 99.8 96.1 97.0 91.1 90.8 88.6 93.3 92.3

r 1.0 0.3 1.9 1.3 1.0 2.8 1.3 1.9 1.6

0% attribute labels l – – – – – – – – 92.4

r – – – – – – – – 1.0
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Additionally, an implementation of Proto-Caps using a 3D convolutional network as its
backbone demonstrates competitive results, further validating the model’s effectiveness
across different settings.

Given the limited availability and high cost of creating medical datasets with both visual
attributes and target classifications, this work explores alternatives to a fully labeled
dataset. Our experiments show that even a small fraction of attribute annotations, as little
as 190 samples in the training dataset, is adequate to generate attribute-specific prototypes
with a high degree of accuracy. This makes the method applicable to other datasets with
minimal additional annotation effort. Zhang et al. (2022) note that subjective radiologist
assessments in the LIDC-IDRI database can introduce label errors and supervision bias.
However, the dataset is large-scale and widely used as a benchmark for lung cancer
prediction. Baltatzis et al. (2021) highlight that data selection affects class distribution, but
we mitigate this issue by using the same preprocessing as prior work (LaLonde, Torigian &
Bagci, 2020; Smit et al., 2020). For CheXpert, studies by Glocker et al. (2023) and Seyyed-
Kalantari et al. (2020) reveal biases in model performance across race and sex.

Various components of the model were investigated, revealing a fair joint feature
importance between the target and attribute predictions. Furthermore, several model
parameters were optimized using the LIDC-IDRI dataset, with the primary objective of
achieving local explainability by utilizing a large number of prototypes. The selection of
various dimensions and quantities helped identify the optimal model configuration.

Validating an AI method that claims to be explainable is challenging, as it requires not
only technical model examination but also an analysis of the explanations’ truthfulness,
helpfulness, and predictive accuracy. In addition to model evaluation, it is critical to
involve potential end-users when assessing explainable AI methods. This is especially true
in sensitive areas such as medicine, where complex tasks demand tailored solutions.

User studies are an essential part of this process, ideally conducted early in AI
development to ensure the AI aligns with user needs. A user study conducted with
radiologists using Proto-Caps has demonstrated that explanations have an impact on their
decision-making. The model’s confidence increases with the number of arguments
presented in favor of its decision. While there was a tendency for human performance to
improve with more explanations when the model was correct, there was also a negative
tendency for users to be led astray by more explanations and make the wrong decision
when the model was incorrect. This finding highlights the impact of model explanations
on users and raises important questions about human-AI interaction. It also suggests that
AI can potentially enhance human performance, but it requires careful consideration of
the design of explanations.

While the results of our study are promising, real-world deployment of this approach
faces additional challenges that need further research. For instance, domain-shift
adaptation will be critical to ensure robustness when the model encounters unseen data
from different settings. Moreover, testing the model with other medical imaging
modalities, such as MRI and Ultrasound, would be essential to evaluate its generalizability.
Finally, exploring its application to a broader range of pathologies will be important to
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assess its robustness across diverse medical contexts. These avenues for future work will be
crucial to making the method more practical and effective in real-world clinical settings.

CONCLUSION
As research into deep neural networks in medical applications progresses, it is crucial to
consider the safety of AI models. To ensure safe usage, interpretability of the models is
necessary. If model interpretability is considered during development, decision support
systems can be created that are intrinsically explainable and allow for
human-understandable validation. This work shows an example of the inclusion of
additional information and its processing, which makes the model more interpretable.
Prototypes are used to identify similarities to the inference sample based on predefined
attributes.

The explanation follows the user’s intuition using attributes that are understandable and
by providing a visual comparison. By imitating the decision-making process of humans,
the user can discuss the model’s prediction and evaluate how much they trust it.
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