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Abstract. Clinical decision-making relies heavily on understanding rel-
ative positions of anatomical structures and anomalies. Therefore, for
Vision-Language Models (VLMs) to be applicable in clinical practice,
the ability to accurately determine relative positions on medical images
is a fundamental prerequisite. Despite its importance, this capability re-
mains highly underexplored. To address this gap, we evaluate the ability
of state-of-the-art VLMs, GPT-4o, Llama3.2, Pixtral, and JanusPro, and
find that all models fail at this fundamental task. Inspired by successful
approaches in computer vision, we investigate whether visual prompts,
such as alphanumeric or colored markers placed on anatomical struc-
tures, can enhance performance. While these markers provide moderate
improvements, results remain significantly lower on medical images com-
pared to observations made on natural images. Our evaluations suggest
that, in medical imaging, VLMs rely more on prior anatomical knowledge
than on actual image content for answering relative position questions,
often leading to incorrect conclusions. To facilitate further research in
this area, we introduce the MIRP – Medical Imaging Relative Position-
ing – benchmark dataset, designed to systematically evaluate the capa-
bility to identify relative positions in medical images. Dataset and code
are available on https://wolfda95.github.io/your_other_left/.
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1 Introduction

Imagine a radiology department where Vision-Language Models (VLMs) support
complex tasks such as radiological report generation or surgical planning. These
systems could reduce diagnostic errors and improve patient outcomes [5,37].
While VLMs already achieve high accuracy in simple diagnostic tasks [3,34,21],
studies in computer vision show they struggle with spatial understanding, such

https://wolfda95.github.io/your_other_left/
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RQ1

Q: Is the left kidney below the
stomach ?

A: I’m unable to answer this question.
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RQ2

A

B

Q: Is the left kidney (A) below the
stomach (B) ?

A: Yes.
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RQ3

A

B

Q: Is the letter A below the letter B ?

A: Yes.
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Fig. 1. We compare four VLMs on their ability to determine relative positions of
anatomical structures in medical images - a fundamental requirement for clinical appli-
cability. All models fail when given plain images (RQ1), with only slight improvements
when visual markers are introduced (RQ2). However, when anatomical names are re-
moved from the question and models must rely solely on the markers, GPT-4o and
Pixtral demonstrate remarkably improved accuracies (RQ3). Note: The results show
the best-performing marker type per model.

as identifying relative positions of objects on images [33,39,15]. This is prob-
lematic, as clinical decision-making relies heavily on understanding the spatial
relationships between anatomical structures or anomalies [14,10]. Localization
mistakes by radiologists have led to serious consequences, including wrong-level
spine surgeries [1], wrong-side procedures [9], or the failure to recognize the prox-
imity of tumors to vessels [23]. Just as understanding the spatial relationships
is essential for radiologists, it is equally critical for VLMs to be clinically ap-
plicable. Without this capability, they cannot reliably describe localizations in
reports. To this end, our first research question (RQ1) is: “Can current top-tier
VLMs accurately determine relative positions in radiological images?”. We in-
vestigate this by focusing on a basic task: identifying the relative position of
two anatomical structures in a computed tomography (CT) slice. Our findings
indicate that even advanced VLMs, such as GPT-4o [18] and Llama3.2 [30], fail
at this fundamental task, raising concerns about their safe use in clinical routine.

To address this limitation, we explore potential solutions. Previous work in
computer vision has shown that visual markers, such as numbers or letters placed
on objects, can enhance the capabilities of VLMs to determine relative object
positions [39,6]. This leads to our second research question (RQ2): “Can visual
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markers improve VLMs’ ability to determine relative positions of anatomical
structures in radiological images?”. Since medical image segmentation is already
well-established and highly accurate [38,19], such markers on anatomical struc-
tures could, for example, be auto-placed based on segmentation model outputs.

State-of-the-art VLMs already possess strong prior anatomical knowledge
embedded within their language components [35]. In other words, they “know”
where anatomical structures are typically located in standard human anatomy.
We hypothesize that VLMs often base their answers on this prior knowledge
rather than analyzing the actual image content. For example, when asked whether
the liver is to the right of the stomach, a model might answer affirmatively with-
out inspecting the image, relying solely on the learned norm that the liver is
usually located to the right of the stomach. Such behavior could lead to critical
misdiagnoses in cases where the actual positions deviate from typical anatomical
patterns, such as in situs inversus, post-surgical alterations, or tumor displace-
ment [13,24,29]. If VLMs rely on language-based priors instead of visual evidence
in these cases, the consequences could be severe. Similar issues have been ob-
served in computer vision, where VLMs prioritize prior learned knowledge over
actual image content [7,36]. Thus, our third research question (RQ3) is: “Do
VLMs prioritize prior anatomical knowledge over visual input when determining
relative positions in radiological images?”

To answer these questions, we introduce the MIRP (Medical Imaging Rela-
tive Positioning) benchmark dataset. Existing visual question-answering bench-
marks on CT or MRI slices include anatomical and localization tasks, but do not
focus directly on the fundamental task of determining relative positions [32,26,4].
Moreover, many localization tasks in these benchmarks can be solved using
prior medical knowledge rather than actual image content, and an evaluation
of this fallback is lacking. MIRP addresses this gap in three ways: through
question-answer pairs assessing the relative position of two anatomical struc-
tures, by investigating whether visual markers improve model performance, and
through random rotations and flips to prevent models from deriving correct
answers based solely on learned anatomical norms. MIRP focuses on abdomi-
nal CT slices since these contain multiple anatomical structures per scan and
are one of the most common radiological examinations [22]. We evaluate three
leading open-source VLMs on MIRP: Meta’s Llama3.2 [12,30], Mistral’s Pix-
tral [31,2], and DeepSeek-AI’s JanusPro [8,11]. We further include one of the
top-performing closed-source VLMs currently available, OpenAI’s GPT-4o [18].
The MIRP benchmark dataset, evaluation code, and all results are available on
https://wolfda95.github.io/your_other_left/.

2 Methods

We introduce the MIRP Benchmark dataset to systematically evaluate VLMs’
ability to identify relative positions in medical images. The dataset consists of
abdominal CT slices, each paired with a question about the relative position
of two anatomical structures, following a standardized template: “Is the struc-

https://wolfda95.github.io/your_other_left/
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ture1 above/below/to the left of/to the right of the structure2?”. The slices are
randomly rotated and flipped to ensure that the model must derive relative po-
sitions from the image rather than relying on anatomical priors to produce a
correct answer. The MIRP dataset is balanced, with an equal distribution of yes
and no answers to questions. The two anatomical structures referenced in the
question are optionally highlighted with visual markers. Three marker types are
evaluated: (1) black numbers in a white box, (2) black letters in a white box,
and (3) a red and a blue dot (see Figure 2). The following sections describe the
dataset generation process and the VLM evaluation pipeline. While these sec-
tions are not required to understand the experiments and results, they provide
additional context for our study.

(0) No Marks

1

2

(1) Numbers as Marks

A

B

(2) Letters as Marks (3) Dots as Marks

Fig. 2. Different visual markers. Note: The real marks are smaller as shown here.

Dataset Generation: We combine CT volumes from two publicly available
abdominal CT datasets: BTCV (Beyond the Cranial Vault) [25,16] and AMOS
(Abdominal Multi-Organ Segmentation) [20,40]. To extract anatomical struc-
tures from the volumetric data, we apply TotalSegmentator [38], a deep learning-
based segmentation model built on nnU-Net [19] and trained on diverse CT
scans. TotalSegmentator provides segmentation masks for 117 anatomical struc-
tures, including organs, bones, muscles, and vessels. We extract axial PNG slices
from the 3D volumes using SimpleITK [28]. A slice is included if it contains at
least two segmented anatomical structures, resulting in 4,878 image slices. Fol-
lowing consultation with senior radiologists, we use the soft tissue window as
it best visualizes the segmented structures. For each 2D image, we randomly
select two segmented anatomical structures that appear only once, are at least
50 pixels apart, and have a size at least twice that of the markers to generate
question-answer pairs. The correct answer is determined based on the coordi-
nates of the center of mass of the segmented structures. Visual markers (numbers,
letters, dots) are also placed at the center of mass. We use the TotalSegmenta-
tor’s structure numbers for all number marks (1-117) and map the letters to
AA-EM, accordingly, so that each structure has a unique number and letter.
VLM Evaluation Pipeline: We compare four different models, namely GPT-
4o-2024-08-06 (OpenAI, closed-source, accessed via API), Pixtral-12B-2409 [31]
(Mistral, open-source), Llama3.2-11B-Vision-Instruct [30] (Meta, open-source)
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and JanusPro-7B [11] (DeepSeek-AI, open-source). All open-source models are
accessed via HuggingFace. The prompts consist of a text prompt followed by the
image. The text prompt contains a fixed and a variable component. The fixed
component includes: Essential contextual information, indicating that the image
represents an axial slice of an abdominal CT scan displayed in the soft tissue
window; instructions to base the answer on the image rather than anatomy; an
example response to illustrate the expected answer format. The variable text
prompt component formulates the specific question.

3 Experiments and Results

The following sections systematically investigate the three proposed research
questions (RQ). Figure 1 illustrates an example of the VLM’s input for each
RQ. Each RQ is assessed through a binary classification task in which a model’s
response is considered correct if it matches the expected answer. Any other
answer, including cases where the model fails to provide a valid response, is con-
sidered incorrect. Each experiment is repeated three times to report the mean
and standard deviation.
RQ1: Can current top-tier VLMs accurately determine relative po-
sitions in radiological images? To answer this, we test VLMs on plain ro-
tated/flipped CT slices. We ask relative positioning questions following our ques-
tion template, e.g., “Is the left kidney below the stomach?”. Figure 3 and Table 1
show the results under “RQ1”. All models reach accuracies that are around 50%,
which indicates that the models’ performances are at chance level. This suggests
an inability to determine relative positions from unmarked radiological images.
RQ2: Can visual markers improve VLMs’ ability to determine rela-
tive positions in radiological images? In this experiment, we use the images
with additional markers (letters, numbers, red/blue dots). The template for the
relative positioning questions is extended to include information about these
markers, e.g., “Is the left kidney (1) below the stomach (2)?”, “Is the left kid-
ney (A) below the stomach (B)?” or “Is the left kidney (red) below the stomach
(blue)?”. Figure 3 (RQ2) shows the results, with different objects referring to
different visual markers (letters, numbers, dots). GPT-4o and Pixtral show slight
performance improvements when letter or number markers are provided. How-
ever, JanusPro and Llama3.2 show little to no improvement. This indicates that
visual markers alone may not be sufficient to enhance a VLM’s ability to deter-
mine relative positions in radiological images.
RQ3: Do VLMs prioritize prior anatomical knowledge over visual in-
put when determining relative positions in radiological images? We
hypothesize that VLMs do not rely solely on the provided image but instead
base their answers to a large extent on learned anatomical knowledge within the
language part. We test this hypothesis in two ways: (1) by assessing whether
VLMs’ responses match the typical anatomical arrangement of the structures,
which would require prior knowledge; and (2) by evaluating performance when
anatomical names are removed from the prompt, thereby preventing the possi-
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bility of using prior anatomical knowledge.
(1): Do VLMs’ responses align with standard human anatomy? Relative po-

sitions of anatomical structures can be provided in two ways: (a) based on the
specific orientation of the provided rotated/flipped image, (b) based on the typi-
cal anatomical positions of the structures in standard human anatomy. So far, we
have evaluated the VLMs’ answers based on the image orientation. Below/above
is defined only in the image, as its interpretation in anatomy is ambiguous (i.e.,
anterior/posterior vs. superior/inferior). Left/right, however, is defined in both,
image view and anatomically, allowing VLMs’ responses to be evaluated based
on either image-view correctness or anatomical correctness. For example, the
correct answer to the question “Is the liver to the right of the stomach?” would
be yes based on standard human anatomy, since the liver is in most humans
indeed to the right of the stomach (following the standard patient-oriented co-
ordinate system used in radiology). But based on the provided image, the cor-
rect answer might be no. A yes response despite contradictory visual evidence
suggests the model is relying on prior anatomical knowledge embedded in the
language component rather than analyzing the image. To investigate what in-
formation (image vs. prior anatomy knowledge) a VLM bases its answer on,
we use the same plain CT slices as in RQ1. We evaluate the VLMs’ answers
to the left/right questions in two ways: (a) correctness based on the provided
rotated/flipped image (same evaluation as in RQ1) and (b) correctness based
on how the structures are normally positioned in standard anatomy. The results
based on the rotated/flipped image are: GPT-4o: 0.506; Pixtral: 0.508; JanusPro:
0.490; Llama3.2: 0.491. The results based on anatomical correctness are: GPT-
4o: 0.757; Pixtral: 0.574; JanusPro: 0.493; Llama3.2: 0.547. As already observed
in RQ1, all VLMs perform at chance level when evaluated based on the image
view. When evaluated for anatomical correctness, GPT-4o achieves an accuracy
exceeding 75%, demonstrating that most of its responses are consistent with the
typical anatomical positions of the structures. As this information is not visually
accessible in the rotated/flipped images, the model must rely on prior anatom-
ical knowledge. Pixtral also performs better, but less markedly. These results
support our hypothesis that, for GPT-4o and Pixtral, responses are influenced
more by prior anatomical knowledge than by image interpretation. However,
JanusPro and Llama3.2 remain at chance level, even when evaluated based on
anatomical correctness.

(2): How well do VLMs perform when prior knowledge cannot be used? We
return to our primary goal, evaluating VLMs’ performance based on the ro-
tated/flipped image view. To do this, we conduct another experiment on the
CT slices with markers, similar to RQ2. In RQ2, models were provided with the
medical names of the anatomical structures in the text prompt questions. Now,
we modify the questions so that models are given only visual markers with no
reference to anatomical structures, e.g., “Is the number 1 below the number 2?”,
“Is the letter A below the letter B?”, or “Is the red dot below the blue dot?”. An
example input is shown in Figure 1 (RQ3). Now, the VLMs can no longer rely on
prior anatomical knowledge based on the question and must instead base their
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answers entirely on the provided image. As shown in Figure 3 under “RQ3 (2)”,
GPT-4o and Pixtral show a substantial increase in accuracy compared to RQ2.
GPT-4o achieves over 85% accuracy on letter markers, while Pixtral exceeds 75%
accuracy on dot markers. This indicates that these models can perform relative
positioning tasks but struggle when anatomical terms are included in the ques-
tion due to their learned priors. JanusPro and Llama3.2 also show improvements
when using dot markers, but still lag behind GPT-4o and Pixtral.

These evaluations test our hypothesis that VLMs rely more on prior anatomi-
cal knowledge than on image content in two ways. First, when VLMs have access
to anatomical names, GPT-4o and Pixtral produce more anatomically correct
answers than image-based correct answers. This indicates a reliance on prior
knowledge, as an anatomically correct answer can only stem from prior knowl-
edge within the language part. Second, when anatomical names are removed,
forcing the models to rely solely on image content, GPT-4o, and Pixtral achieve
high accuracies when evaluated based on the image view. These findings support
our hypothesis for GPT-4o and Pixtral but do not provide strong evidence for
JanusPro and Llama3.2.
Ablation Study: How well do VLMs perform on relative positioning
tasks in general? To assess the ability to determine relative positions inde-
pendent of domain knowledge, we design one of the simplest possible relative
positioning tasks – white images with randomly placed markers. We generate
100 images per marker type and ask questions such as “Is the number 1 above
the number 2?”. As shown in Fig. 3 (AS), Pixtral demonstrates improved per-
formance on dot markers, while the other models achieve results similar to those
from RQ3. The fact that JanusPro and especially Llama3.2 do not perform well
even under these simplified conditions suggests that both models have fundamen-
tal limitations in relative positioning tasks that extend beyond medical imaging.
Further Analysis: Our findings across all experiments indicate that different
models benefit from different visual markers. GPT-4o performs best with letter
markers, while Pixtral, JanusPro, and Llama3.2 perform best with red/blue dots.
Table 1 presents the results with the best-performing marker type per model for
all experiments on image-view evaluation. Among the evaluated models, GPT-4o
achieves the highest performance, whereas Pixtral is the best-performing open-
source model. We further analyzed the results for each flip/rotation variant sep-
arately. Context: Radiological images in standard view mirror the anatomical
definition (anatomical right appears on the image’s left). As a result, already
in standard view, VLMs relying on prior anatomical knowledge rather than vi-
sual input answer left/right questions incorrectly. Since the left-right swap is a
well-defined convention, VLMs might learn to compensate for it. To eliminate
this potential bias, we applied the flips/rotations. Evaluation: In RQ1, for the
two variants where the image aligns with anatomical left/right (Flip+NoRot
and NoFlip+180°Rot), GPT-4o and Pixtral perform above chance, while for all
other variants, performance is at chance level. This shows that VLMs do not
compensate for the left-right swap, and it supports our RQ3 finding.
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RQ1
CT Image: No Marker

Question: Name

RQ2
CT Image: Marker

Question: Name + Marker

RQ3 (2)
CT Image: Marker
Question: Marker

AS
White Image: Marker

Question: Marker

   MIRP Benchmark Dataset   Ablation Dataset
Marker Type

NoMark
Dot
Letter
Number

Fig. 3. Mean accuracy for all experiments based on image-view evaluation on the
MIRP benchmark dataset (RQ1-3) and the ablation dataset (AS).

Table 1. Accuracy for all experiments based on image-view evaluation. For RQ2, RQ3,
and AS, the best-performing markers are reported: letters for GPT-4o; dots for Pixtral,
JanusPro, and Llama3.4.

Model RQ 1 RQ 2 RQ 3 (2) AS

GPT-4o 0.505 ± 0.005 0.597 ± 0.004 0.874 ± 0.002 0.860 ± 0.026
Pixtral 0.507 ± 0.006 0.552 ± 0.003 0.762 ± 0.004 0.870 ± 0.010
JanusPro 0.492 ± 0.008 0.506 ± 0.006 0.670 ± 0.007 0.683 ± 0.023
Llama3.2 0.493 ± 0.005 0.539 ± 0.008 0.555 ± 0.007 0.550 ± 0.053

4 Conclusion and Future Work

Support from a VLM in a radiology department could drastically improve the
efficiency and accuracy of diagnostics. However, this vision can only be realized
if VLMs can accurately answer relative positioning questions. Our study demon-
strates that current VLMs fail at this fundamental task, performing at chance
level when provided with unmarked CT slices. When introducing markers, we
achieve moderate improvements, but results remain far below those observed in
natural image studies [39,6]. Since VLMs already possess strong anatomical pri-
ors embedded in the language components [35], we hypothesize that models rely
more on prior knowledge than on actual image content. This bias could result
in critical misdiagnoses, particularly in anatomical anomalies or rare conditions.
Our findings support this hypothesis for GPT-4o and Pixtral, whereas we do
not find strong supporting evidence for JanusPro and Llama3.2. A task with



Your other Left! 9

no medical context confirms that JanusPro and Llama3.2 struggle with identi-
fying relative positions in general. Altogether, further research that builds on
these findings is essential for implementing VLM support in radiology. To facili-
tate such research, we introduce MIRP, a publicly available benchmark dataset,
alongside this evaluation. While we evaluate general-purpose VLMs on the MIRP
benchmark, future research could assess medical fine-tuned VLMs [27,17]. Our
study and the MIRP benchmark dataset are limited to CT images. While we
assume that the presented findings generalize to other modalities, future work
could explore MRI or PET images. Furthermore, our evaluation is based on 2D
slices rather than full 3D volumes since current VLMs operate on 2D images.
However, transitioning to volumetric data could drastically improve clinical ap-
plicability. Altogether, our evaluation of the ability to identify relative positions
in medical images serves as a critical first step toward enabling VLMs for clin-
ical applications and paves the way for myriad follow-up experiments that are
required before bringing VLMs into real-world radiology practice.
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