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Fig. 1. Evaluating AI-based text-to-image generation requires two types of quality measures that contribute to an overall image quality score.
Compositional Quality measures how well the image reflects the composition defined in the text prompt, while General Image Quality measures
the overall quality of the image. For both types, several different aspects have to be considered depending on the desired use.

Abstract—AI-based text-to-image models do not only excel at generating realistic images, they also give designers more and more
fine-grained control over the image content. Consequently, these approaches have gathered increased attention within the computer
graphics research community, which has been historically devoted towards traditional rendering techniques, that offer precise control
over scene parameters (e.g., objects, materials, and lighting). While the quality of conventionally rendered images is assessed through
well established image quality metrics, such as SSIM or PSNR, the unique challenges of text-to-image generation require other,
dedicated quality metrics. These metrics must be able to not only measure overall image quality, but also how well images reflect given
text prompts, whereby the control of scene and rendering parameters is interweaved. Within this survey, we provide a comprehensive
overview of such text-to-image quality metrics, and propose a taxonomy to categorize these metrics. Our taxonomy is grounded in the
assumption, that there are two main quality criteria, namely compositional quality and general quality, that contribute to the overall
image quality. Besides the metrics, this survey covers dedicated text-to-image benchmark datasets, over which the metrics are
frequently computed. Finally, we identify limitations and open challenges in the field of text-to-image generation, and derive guidelines
for practitioners conducting text-to-image evaluation.

Index Terms—Image Generation, Text-to-Image Models, Image Quality Metrics, Human-AI Alignment.
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1 INTRODUCTION

THE rapidly evolving landscape of AI-based text-to-
image (T2I) generation models has emerged as a pivotal

area in computer graphics [1]–[4], computer vision and nat-
ural language processing [5]–[7]. For the computer graphics
community, T2I generation opens new avenues for develop-
ing more intuitive and user-friendly interfaces for graphics
software, enabling artists and designers to generate virtual
imagery simply through textual descriptions. Furthermore,
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it pushes the boundaries of traditional rendering techniques
by integrating linguistic context into visual content [8],
[9], which can revolutionize how visual effects are created,
how narratives are visualized, and how interactive me-
dia is produced. After significantly lowering the hardware
requirements for T2I models through latent diffusion, an
increasing number of publicly available T2I models, such
as DALL-E, ImageFX, DreamStudio, Midjourney, as well as
Flux, became accessible not only to researchers, but also
to novices. Thus, as the technology progresses, it starts
to diminish the time and technical barriers traditionally
involved in high-quality graphics production.

As the demand for seamless integration between tex-
tual and visual information intensifies, understanding the
intricate mechanisms influencing T2I generation becomes
imperative. To do so, T2I quality metrics are an essential
tool, as they allow for objectively evaluating T2I generation
models. Unfortunately, defining requirements for T2I image
quality metrics is not straightforward. Realism is undoubt-
edly the major aspect targeted by researchers [10]. However,
the interpretation of realism highly depends on the text con-
ditioning, e.g., an image can be photorealistic, realistic in the
context of a manga or realistic in the style of Pablo Picasso.
Other aspects that contribute to high-quality images include
aesthetics [11], human preferences [12]–[15], naturalism, and
the principles of photography, such as balance, harmony,
closure, movement, color, pattern, contrast, negative space,
and grouping. Although some of these aspects may be
quantitatively measurable, many are abstract, complex, and
therefore difficult to measure. However, natural language
can depict these aspects in great detail, and there are
many talented authors who generate creative descriptions
of sceneries. Hence, detecting and measuring the quality
of these abstract yet well-described aspects presents a chal-
lenge to researchers in the field of text-conditioned image
generation.

Within this survey, we aim to review and categorize T2I
quality metrics comprehensively with the goal to provide
both an overarching perspective and actionable insights
to assist researchers and practitioners in evaluating T2I
generation models effectively. To help structure the exist-
ing literature, we define the overall quality of an image
conditioned on a text prompt as a combination of general
quality and compositional quality, where the latter measures
the degree of alignment between the text and the image
(see Figure 1). A high compositional quality score can only
be achieved if all details described in a text prompt are
visually represented in the image, while a high general
quality does not have any implications on how closely the
image content reflects the text prompt. By considering these
two main image quality contributors, we are able to review
existing T2I quality metrics in a structured manner, and to
derive a taxonomy classifying existing T2I quality metrics.
While the taxonomy has emerged from the reviewed quality
metrics, we will present it first within Section 2, as we
believe that it is an important tool to understand the field
of T2I quality metrics, and ultimately guide the reader
through this survey. After the taxonomy has been laid out,
the reviewed T2I quality metrics are presented in Section 3,
which is structured according to the main categories of
our taxonomy. To allow for an objective comparison of T2I

generation models, not only are the used quality metrics of
importance, but also the datasets on which these metrics
are evaluated. Therefore, we will cover T2I evaluation data
sets within Section 4. Based on the reviewed metrics and
datasets, we will further outline open challenges related to
the evaluation of T2I models (see Section 5), and provide
guidelines for practitioners and researchers evaluating T2I
models (see Section 6). In Section 1 of our supplementary
material, we discuss methods that apply T2I quality metrics
to optimize image generation. In Section 2, we provide
experimental results from an investigation of a selection
of six human preference metrics. Finally, the survey will
conclude in Section 7.

2 TAXONOMY

Based on the reviewed T2I image quality metrics (see Sec-
tion 3), we have derived a taxonomy, which helps readers
to gain an overview of the field of these metrics. Within this
taxonomy, we on the one hand consider image-only quality
metrics, that are designed to measure image quality by solely
considering images and thus not consider text prompts (red
boxes in Figure 2). In contrast, text-image quality metrics con-
sider the agreement between image content and text prompt
(blue boxes in Figure 2). While image-only quality metrics
can solely be used to express general image quality, text-
image quality metrics can be used to measure compositional
image quality, which can be considered of a finer granular
nature, as individual entities are taken into account. Since
both, general image quality and compositional image qual-
ity, are relevant to assess a T2I generation model, often both
qualities are assessed, and an average score of general and
compositional image quality is reported. As high composi-
tional quality does not automatically result in high general
image quality and vice versa, both scores should though
also be reported alongside their average.

Image-only quality metrics and text-image quality met-
rics naturally differ based on their input. Image-only quality
metrics solely process the image x as input, while text-
image quality metrics process the image x together with
the text prompt t as input. Besides this main distinction,
other metric properties are relevant during categorization.
Therefore, when reviewing the discussed metric papers, we
have performed a coding of the most essential components
of each metric, and used these components to further in-
form our taxonomy. Accordingly, the presented taxonomy
categorizes T2I quality metrics based on their operating data
structure (embeddings vs. contents), measured aspects (gen-
eral quality vs. compositional quality), scope (distribution
of images vs. single images), and conditions (image-only
vs. text-image) used. In the following, we will describe the
categories of our taxonomy with respect to these compo-
nents. To enable the reader to better relate the described
metrics to each other, we further introduce a mathematical
notation to formalize their description. The variables used
in this notation are outlined in Table 1.

2.1 Image-Only Quality Metrics

Pure image-only quality metrics do not take into account the
textual condition t when evaluating generated images, and
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Fig. 2. Proposed taxonomy and examples for T2I evaluation metrics. Two categories of metrics need to be distinguished: image-only and text-
conditioned image quality metrics. Image quality metrics can measure two different qualities which correlate with this categorization, namely general
image quality and compositional quality.

can therefore only evaluate general image quality, as opposed
to compositional image quality. We define general image quality
as quantifying a certain aspect globally for a single image,
e.g., realism, aesthetics, and human preferences, for which
ground truth can be collected by asking human raters for
their judgments. Usually, this is done by conducting a large-
scale crowd-sourced study where images are ranked by
a large group of human observers, which is a high-effort
endeavor. Hence, practitioners use the acquired human an-
notations to develop deep learning-based evaluation models
that are designed to imitate such human judgments, e.g.,
Aesthetic Predictor [11], PAL4VAST [16], [17], and Human
Viewpoint Preferences [15]. In many scenarios, these image
quality metrics play an important role, as image quality
is often assessed independently from how well the image
content depicts a given text prompt. For instance, an im-
age that appears photorealistic but disregards the textual
content may receive a high general quality score but a
low compositional quality score. Conversely, an image that
accurately represents all objects and relationships described
in the prompt might still look artificial, leading to a low
general quality score but a high compositional quality score.
In Figure 1, we illustrate such examples.

Variable Description

t text prompt
x Image
X Set of images
ft Text embedding vector
fi Image embedding vector
D Distance measure (usually non-trainable)
F θ Neural model with trainable parameters θ
ΦT Text dissection process
ΦI Image dissection process
ST Separated content elements of a prompt
SI Separated content elements of an image
η Image captioning model

TABLE 1
Description of variables used for our mathematical notation describing

image and text-image quality metrics.

Among the image quality metrics, techniques can be
further divided based on how the image information is
considered. Accordingly, we further divide the image qual-
ity metrics category into two subcategories, one processing
single images only, and one processing distributions. We
refer to these subcategories as single image quality metrics
and distribution metrics, and will discuss them in more detail
below.

2.1.1 Single Image Quality Metrics
Single image quality metrics measure quality for individual
images by analyzing an image x based on its structural
and semantic composition. They are also referred to as no-
reference image quality metrics, as no ground truth or other
reference image is used to compare the image to. Instead,
single image quality metrics QMsingle extract features from
the image and subsequently infer quality, which is measured
by a quality measure DI :

QMsingle(x) = DI(x) (1)

Recent approaches, which can be categorized as single
image quality metrics, often rely on a fine-tuned image
model F θ

s that is trained to predict human judgments, e.g.,
LAION Aesthetic Predictor [11], perceptual artifact local-
ization (PAL) [16], [17] or human viewpoint preferences
(HVP) [15], with θ being the fine-tuned weights. Thus, the
metric QMsingle(x) becomes dependent on some learned
parameters θ, and can be formulated as:

QMθ
single(x) = F θ

s (x) (2)

2.1.2 Distribution Metrics
Distribution metrics are focused on evaluating a T2I gener-
ation model, rather than individual outputs. Thus, while
the T2I model is treated as a black box, its quality is
evaluated based on the output sample distribution p(Xg).
During evaluation, the differences between the distribution
p(Xg) of generated data Xg and the distribution p(Xt)
of given, usually real-world, target data Xt are analyzed.
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A general definition of a distribution-based quality metric
QMdistribution can be formulated as follows:

QMdistribution(Xg, Xt) = DD(p(Xg), p(Xt)) (3)

where DD is a statistical distance or divergence measure
between two probability distributions.

Performing direct calculations DD in the high-
dimensional image space is often intractable. Therefore,
images are mapped to a lower-dimensional feature space
fg = F θ(Xg) and ft = F θ(Xt) using a pre-trained fea-
ture extractor F θ with trainable parameters θ, such as an
intermediate layer of a convolutional neural network. Thus,
when considering this projection, QMθ

distribution can be
formalized as follows:

QMθ
distribution(Xg, Xt) = DD(p(F θ(Xg)), p(F

θ(Xt))) (4)

Frequently used distribution metrics are the Inception Score
(IS) [18] and the Fréchet Inception Distance (FID) [19].

2.2 Text-Image Quality Metrics
Text-image quality metrics measure the degree to which an
image depicts a textual prompt that has been used for its
generation. Thus, in contrast to image-only quality met-
rics, they can measure compositional quality by dissecting
the prompt and the image into multiple text-image pairs
and evaluating the matching of these pairs. In particular,
quality is measured by analyzing the alignment between
prompt specification and content depicted in the image, e.g.,
through measures such as object accuracy (OA), spatial re-
lation (S), non-spatial relation (NS), and attribute binding
(AB) [20]–[22]. Usually, the prompt is composed of multiple
distinct pieces of information that describe different parts of
a scenery. These pieces of information accumulate into a rich
description of the scene. Specifically, a complex prompt can
be decomposed into a set of disjoint assertions that describe
different parts of the content, e.g., single or multiple objects,
relations between objects, object attributes, lighting, style,
and artistic reference. Thus, the composition of assertions
must be known or extracted from the prompt. This concept
is akin to Winoground’s [23] notion of visio-linguistic com-
positional reasoning. It refers to the task of understanding
and reasoning about the relationships between visual and
textual components in a way that requires combining them
to form a coherent understanding or to make inferences.
This involves tasks that require not just recognizing objects
or elements in images and understanding text but also
understanding how the textual and visual elements interact
and convey a particular meaning.

In the category of image-text metrics, we have further
identified the subcategories embedding-based metrics, which
quantify image generation quality based on text-image
alignment e.g., PickScore [13], ImageReward [12], Human
Preference Score [14], [24], and content-based metrics, which
examine the content of both the generated image and the
text prompt. We will discuss both of these subcategories in
more detail below.

2.2.1 Embedding-based Metrics
Embedding-based metrics, quality evaluation is based on
learned embedding representations for vision and language

inputs. Therefore, a text prompt t is tokenized by a to-
kenizer and is then transformed into an embedding vec-
tor ft = F θ

T (t) using a text encoder model F θ
T , e.g., a

transformer [25]. Similarly, image x is transformed into
an image embedding representation fi = F θ

I (x) using an
image encoder model F θ

I , e.g., a ViT [26]. These embedding
vectors ft and fi have a fixed size and carry compressed
information of both representations. Since the foundation
models used are trained through representation learning in
order to output meaningful embeddings, the cosine distance
Dcos between text and image embeddings can be computed
to measure alignment:

Dcos(ft, fi) = 1− Scos(ft, fi) (5)

whereby the cosine similarity Scos is given by:

Scos(ft, fi) =
fi · ft

∥fi∥∥ft∥
(6)

When training a powerful T2I model, embedding vectors
for text-image pairs are aligned via vision-and-language
pretraining strategies, e.g., CLIP [27], BLIP [28], or BLIP-
2 [29]. The embedded vectors extracted from these models
encode valuable information, resulting in superior perfor-
mance for multiple zero-shot scenarios [28]–[30]. For exam-
ple, the widely used CLIPScore [31] metric is defined by:

QMclip(t, x) = ω ∗max(Scos(F
θ
T (t), F

θ
I (x)), 0) (7)

which re-scales the cosine similarity metric by the factor ω.
However, several works have shown that pre-trained

representations can be further fine-tuned on human-
annotated data. In this way, human judgments can also
be incorporated into the embeddings, as demonstrated by
PickScore [13] and ImageReward [12]. Embedding-based
metrics are computed utilizing these embedding representa-
tions, e.g., measuring similarity via Equation (6), or regress-
ing a score learned by a feed-forward network F θ

e :

QMembedding(t, x) = F θ
e (F

θ
T (t), F

θ
I (x)) (8)

2.2.2 Content-based Metrics
Content-based metrics analyze language and visual repre-
sentations with respect to their semantic content, whereby
the actual measurements of such metrics are computed for
decomposed components separately. Content-based metrics
are based on the way in which humans would compare con-
tent across the text and image domains, e.g., reading words
in a prompt and matching them to regions depicted in the
image, and vice versa. Hence, content-based quality metrics
are comprehensible for human observers due to their relat-
able behavior, and are thus opposed to embedding-based
metrics, inherently explainable.
Text-Image Content Matching. To relate parts of the text
prompt to image regions, the text prompt needs to be
dissected into substrings, where each substring describes
distinct details, e.g., an object, the relation between two
objects, scene settings, etc. This decomposition into distinct
semantic elements ST = {s1, s2, . . . , sn} is elementary
for text-image content matching. An automated process
ΦT , usually based on an LLM, performs decomposition at
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the word level. Some benchmark datasets [32] synthesize
prompts using prompt templates to generate object rela-
tions, e.g., “{objectA} {spatial relation} {objectB}”. Using
such a prompt dissection method ΦT , the resulting set
of elements ST is compared to the corresponding regions
in the image. This can be done using a visual question
answering model (VQA) [29], [33], where questions are
generated based on the elements in ST . The VQA model F θ

is then interrogated for the presence or absence of specific
relations, objects, attributes etc., and the distance measure is
computed by facilitating the VQA:

QMF θ

TI (t, x) = F θ(ΦT (t), x) (9)

Another way to assess content alignment is to match ele-
ments from the prompt to regions of the image. Therefore,
meaningful regions from the image using an image-based
detector ΦI are extracted resulting in candidate regions
found in the image represented by a set of visual elements
SI = {s1, s2, . . . , sm}. This is usually done through object
detection [34] or semantic segmentation [35]. Then, a dis-
tance measure DTI computes matches elements from ST to
elements inside SI .

QMΦI

TI (t, x) = DTI(ΦT (t),ΦI(x)) (10)

Image-Text Content Matching. In contrast to text-image
content matching, image-text content matching starts the
dissection on the image side. Thus, ΦI derives a set of visual
elements SI corresponding to regions in the image. Conse-
quently, a distance measure DIT matches the image regions
to the corresponding positions of the prompt. Image-text
content matching can thus be formalized as follows:

QMIT (t, x) = DIT (ΦT (t),ΦI(x)) (11)

It is important to observe that the relation between text-
image and image-text content matching is not bijective, since
there might be parts in the image that are not mentioned in
the text and vice versa, for example ST ∪ SI ̸= ST ∩ SI .

Instead of extracting visual elements directly from the
image, an image caption model η can also be used to
generate captions [33], [36], which then in turn describe
the presented scene. Image captioning is an ongoing topic
within the vision-language model community, and for the
evaluation of such models, image caption metrics are uti-
lized [37]–[42] and image-text matching can be based on an
image caption metric Dc as follows:

QMη
IT (t, x) = Dc(t, η(x)) (12)

3 METRICS

In this section, we provide an overview of key metrics used
to evaluate image quality in T2I generation systems. The
assessment of image quality for T2I generation has evolved
significantly to address the multimodal nature of the task,
as opposed to traditional image quality metrics, which do
not consider the text prompt t. Therefore, this section first
reviews approaches considering image x and text prompt
t simultaneously, before reviewing image-only metrics. We
begin with embedding-based metrics (Section 3.1), which

leverage shared embedding spaces to assess the seman-
tic alignment between text and images. Next, we explore
content-based metrics (Section 3.2), including methods for
evaluating text-image content matching (Section 3.2.1) and
image-text content matching (Section 3.2.2), focusing on the
interplay between text descriptions and generated content.
Finally, we discuss image-only metrics (Section 3.3), which
evaluate visual quality independently of textual informa-
tion. This includes metrics that compare the distribution
of generated images (Section 3.3.1) and those that assess
the quality of individual images (Section 3.3.2). Together,
these approaches provide a comprehensive framework for
evaluating the multimodal and visual aspects of T2I gener-
ation. To identify the relevant T2I quality metrics for this
survey, we have performed a systematic literature study.
We started our study with a selection of seminal papers
from prominent conferences and journals, including CVPR,
ICCV, ECCV, and NeurIPS. These publications were selected
to ensure coverage of influential methodologies within the
domain, which led us to the following seed papers: CIDERr
[37], CLIPScore [31], PickScore [13], Image Reward [12],
Human Preference Score [14], Inception Score [43], and
Fréchet Inception Distance [19]. To ensure our process was
robust, we also employed a systematic exploration of recent
proceedings from these conferences over the last years,
where we manually examined their titles and abstracts for
relevance to T2I quality evaluation metrics. This additional
step helped capture impactful works that might not yet
have reached high citation counts but are recognized as
important by the research community. Leveraging ChatGPT-
based research tools to efficiently navigate conference pa-
pers was instrumental in this process. The selection of seed
papers was a critical step, as it formed the basis for the
subsequent literature review process. Based on the iden-
tified seed papers, we expanded our corpus by exploring
the citation tree of these using the Google Scholar database,
enabling us to identify and incorporate additional relevant
studies. During this step, we applied a systematic keyword-
based search strategy to identify relevant works, using terms
such as “T2I metrics,” “text-to-image quality evaluation,”
“generative models evaluation,” and “image captioning
metrics.” Recognizing the rapid pace of advancement in
this field, during this step, we also included non-peer-
reviewed preprints from arXiv in our analysis. We assume
that excluding such works would risk omitting significant
contributions that may be formally published at a later time.
Within this section, we will present and discuss the papers
which we have included in this survey.

Table 2 presents an overview of the reviewed quality
metrics, where we compare the metrics on four composi-
tional aspects, cf. Section 2.2 and award points accordingly.
Zero points are awarded when the metric is neither text-
conditioned nor designed to capture the corresponding
aspect. One point is awarded when the metric is text-
conditioned but is not explicitly trained to reflect com-
positionality. Two points are awarded for fine-tuning or
other optimizations for certain aspects. The metrics to which
we have assigned three points are specifically designed to
reason about the aspect in question, such as object detection,
segmentation, or dedicated visual question answering.
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Compositional Ability

Taxonomy Metric Year Cites/ Fine Object Spatial Non-Spatial Attribute Human RationaleYear Tuned Accuracy Relations Relations Binding Evaluated

CLIPScore [31] 2021 311 ✗ ✓ ✗
BLIP-ITC [28] 2022 1374 ✗ ✗ ✗
BLIP-ITM [28] 2022 1374 ✗ ✗ ✗
BLIP2-ITC [29] 2023 2349 ✗ ✗ ✗
BLIP2-ITM [29] 2023 2349 ✗ ✗ ✗
MID [44] 2022 10 ✗ ✓ ✗
CLIP-R-Precision [45] 2021 32 ✓ ✓ ✗
NegCLIP [30] 2022 107 ✓ ✗ ✗
MosaiCLIP [46] 2023 3 ✓ ✗ ✗
CLoVe [47] 2024 3 ✓ ✗ ✗
PickScore [13] 2023 128 ✓ ✓ ✗
ImageReward [12] 2023 186 ✓ ✓ ✗
HPSv1 [24] 2023 44 ✓ ✓ ✗
HPSv2 [14] 2023 80 ✓ ✓ ✗
DreamSim [48] 2023 61 ✓ ✓ ✗
COBRA [49] 2024 2 ✓ ✓ ✗
R-Precision [50] 2018 317 ✓ ✗ ✗

Em
bedding-based

RAHF [51] 2023 27 ✓ ✓
B-VQA [52] 2023 84 ✗ ✓ ✗
VISORcond [32] 2022 22 ✗ ✓
PA [20] 2022 6 ✗ ✓ ✗
CA [20] 2022 6 ✗ ✓ ✗
SOA [53] 2020 40 ✗ ✓
VISOR [32] 2022 22 ✗ ✓
VISORN [32] 2022 22 ✗ ✓
TIAM [21] 2024 5 ✗ ✓
3-in-1 [52] 2023 84 ✗ ✓
ViCE [54] 2023 4 ✗ ✓
TIFA [55] 2023 83 ✗ ✓
VNLI [56] 2023 31 ✓ ✓ ✗
MQ [22] 2023 3 ✗ ✓ +
VQ2 [56] 2023 31 ✗ ✓
VQAScore [57] 2024 57 ✓ ✓ ✗
MINT-IQA [58] 2024 5 ✓ ✓

Text-Im
age

DA-Score [59] 2023 9 ✗ ✓
LEIC [39] 2018 27 ✗ ✓ ✗
CIDEr [37] 2015 544 ✗ ✓ ✗
TIGEr [40] 2019 13 ✗ ✓ ✗
SPICE [38] 2016 257 ✗ ✓ ✗
T2T [60] 2023 218 ✗ ✓ ✗
ViLBERTScore [42] 2020 11 ✗ ✓ ✗
VIFIDEL [41] 2019 8 ✗ ✓ ✗
UniDet [52] 2023 84 ✗ ✓
LLMScore [61] 2023 33 ✗ ✓

C
ontent-based

Im
age-Text

VIEScore [62] 2023 16 ✗ ✓
IS [18] 2016 1398 ✗ ✗ ✗
FID [19] 2017 1885 ✗ ✗ ✗
MiFID [63] 2021 11 ✗ ✗ ✗
KID [64] 2018 241 ✗ ✗ ✗
C2ST [65] 2016 55 ✗ ✗ ✗
PRD [66] 2018 93 ✗ ✗ ✗
CAS [67] 2019 44 ✗ ✗ ✗
DINO Metric [68] 2023 1236 ✗ ✗ ✗

D
istribution

I-PRD [69] 2019 139 ✗ ✗ ✗
GMM-GIQA [70] 2020 19 ✗ ✗ ✗
CLIP-IQA [71] 2023 198 ✗ ✗ ✗
Aesthetic Predictor [11] 2022 999 ✓ ✓ ✗
PAL4VST [16] 2023 9 ✓ ✓
PAL4InPaint [17] 2022 7 ✓ ✓
KPR [69] 2019 139 ✗ ✗ ✗

Single
Im

age

PPL [72] 2019 2188 ✗ ✗ ✗

: text-based rationale, : image-based rationale

TABLE 2
Comparative overview of T2I evaluation metrics classified according to our proposed taxonomy, indicated by color: blue for text-conditioned

metrics and red for image-only metrics. This table also categorizes current state-of-the-art methods based on their ability to assess compositional
alignment, their validation through human evaluation studies, and their provision of additional rationale beyond a mere quality score.
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3.1 Embedding-based Metrics

Text-conditioned image quality assessment represents a
novel and evolving paradigm in the field of T2I generation.
In these approaches, the perceived quality of an image is
assessed not only based on its visual characteristics, but also
in the context of accompanying textual information. How-
ever, existing image-only measures (Section 3.3) are unable
to integrate textual cues that describe the content associated
with an image. T2I alignment acknowledges the intrinsic
relationship between language and visual perception, allow-
ing for a more nuanced evaluation that aligns with human
judgment. In applications where text and image synergy is
crucial, such as T2I generation, image captioning, content-
based image retrieval, and human-computer interaction-
based image generation, quantitatively measuring the align-
ment between text and image is mandatory. The incorpora-
tion of textual information introduces a dynamic dimension
to image quality assessment, reflecting the evolving needs
of multimodal systems and fostering advancements in the
understanding and evaluation of visual content. In the fol-
lowing, we provide an overview of recent developments in
quality assessment for T2I alignment.

One of the first reference-free approaches, that were used
for measuring the distance between a textual and an image
representation is CLIPScore [31], which is based on Con-
trastive Language-Image Pre-training (CLIP) [27]. The CLIP
distance is computed through the cosine similarity between
the text embedding vector and the image embedding vector.
By pre-training on vast and diverse datasets, CLIP exhibits
a remarkable capacity to generate meaningful and contex-
tually rich embeddings for images and corresponding tex-
tual descriptions. CLIPScore was introduced as a reference-
free evaluation metric for image caption generation tasks
together with its reference-based version RefCLIPScore.

The Multimodal mixture of Encoder-Decoder (MED)
was proposed by Li et al. [28] and serves as a framework for
multi-task pre-training and flexible transfer learning using
image-text pairs from the web, integrated into BLIP, which
supports various downstream tasks like T2I retrieval on
datasets such as COCO Captions [73] and Flickr30K [74],
[75]. BLIP employs image-text contrastive learning (ITC)
to generate embedding vectors for computing cosine sim-
ilarity, while its image-text matching (ITM) variant focuses
on binary classification of image-text pairs. In 2023, BLIP2
was introduced as an efficient vision-language pre-training
method that leverages pre-trained image encoders and large
language models (LLMs) with fewer trainable parameters,
achieving new benchmarks and advanced zero-shot capa-
bilities for text generation from images. BLIP2 features a
two-stage pre-training process with a query transformer
(Q-Former) that enhances vision-language representation
learning and generative learning, similarly utilizing learned
embedding vectors to compute alignment scores (BLIP2-
ITC) and offering an image-text matching version (BLIP2-
ITM) as well.

Singh et al. [46] additionally employs scene graphs
and proposes a graph decomposition and augmentation
framework to learn text-image representation. They derive a
pseudo image scene graph from the text caption by dividing
the text-based graph into multiple subgraphs and matching

them with the image. They further extend the common
vision-language component of the loss by an image-to-
multi-text loss to train their model MosaiCLIP.

LXMERT, Tan et al. [76] introduced, is a transformer
model employing three encoders for object relationships,
language, and cross-modality, using text and image inputs
and a separate object detection module for image encoding.
This dependency is disadvantageous, as the object detector
may miss some objects, possibly omitting vital information.
On the other hand, the Unified Transformer (UniT) by Hu
et al. [77] simultaneously learns visual perception and lan-
guage tasks without requiring task-specific tuning, handling
text-image pairs with a task-specific index. UNITER by
Chen et al. [78] uses four pre-training tasks and also relies
on an object detector, sharing LXMERT’s drawback. Gan
et al. [79] enhance UNITER with large-scale task-agnostic
adversarial pre-training and task-specific tuning, creating a
more consistent embedding space. Zhang et al. [80] improve
a vision-language framework by amplifying training data
and refining the object detection model, aiding downstream
representations, but unlike UniT, their method needs task-
specific tuning. Kim et al. [81] propose ViLT, a straightfor-
ward and effective vision-language pre-training approach.
Unlike previous methods, their model doesn’t use region
features from an object detection model, instead applying
a vision transformer encoder to generate patch-level rep-
resentations, decreasing reliance on the detector for feature
extraction. This also minimizes model size and boosts speed.
The method uses a shared transformer encoder with modal-
ity tokens to distinguish between text and image inputs,
along with specific token and patch positional embeddings.
Li et al. [82] introduced the Visual Semantic Reasoning
Network (VSRN), employing bottom-up attention to con-
sider relevant image regions, further processed by a graph
convolution network for semantic relationship features. The
output is paired with text encoding, optimizing the encod-
ing and text generation to align modalities together.

Another relevant metric for evaluating text-image align-
ment is R-Precision. Xu et al. [50] were the first to apply
it for text-image alignment. For this, they aim to identify
the top r relevant text captions for a given image with
caption candidates R, to compute R-Precision as r/R. This is
achieved by first extracting global feature vectors from their
pre-trained encoders for generated images and given text
captions. The cosine similarity is computed between image
and text vectors, and then used to rank the captions in de-
scending similarity to identify the r most similar candidates.
Park et al. [45] extend this approach by using CLIP as the
encoder for images and text, and show this leads to a more
human-aligned judgment and prohibits the bias that might
come from using a custom model.

Kim et al. [44] proposed Mutual Information Divergence
(MID), a unified metric for multimodal generation, calcu-
lated through the negative Gaussian cross-mutual informa-
tion between real and generated samples. Broadly formu-
lated, their metric quantitatively measures how well one
modality is aligned with the other, where both modalities
are represented as encodings generated by their respective
CLIP encoders. MID is shown to have consistent behavior
across a variety of datasets where cosine-similarity-based
techniques have shown weaknesses, especially for narrow
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domains like images of human faces. Kirstain et al. [13]
developed a scoring function called PickScore to estimate
user satisfaction with the generated images by fine-tuning
CLIP-H on a large dataset of generated images and human
preferences. Their objective maximizes the likelihood of a
preferred image over an unpreferred one, culminating in
a benchmark named Pick-a-Pic, which includes 500k ex-
amples and 35k distinct prompts that reflect human imag-
ination in image generation. Xu et al. [12] advanced this
concept by creating a T2I human preference reward model
trained on 137k annotated text-image pairs, utilizing the
model’s output for Reward Feedback Learning to enhance
a diffusion model’s image generation, resulting in images
more aligned with human preferences. Similarly, Wu et
al. developed their human preference score (HPS) in two
iterations; the first [24] involved a dataset of 98k images
and 25k prompts, where they fine-tuned a CLIP-L model
to maximize similarity between prompts and user-chosen
images while minimizing similarity to rejected images. The
second version [14] expanded the dataset to 798,090 anno-
tations for 433,760 image-text pairs, improving the scoring
mechanism and demonstrating sensitivity to algorithmic
enhancements in T2I models. Although these approaches
improve the alignment with human preferences, they also
highlight the challenges of accurately capturing subjective
user satisfaction in image generation.

Fu et al. [48] propose DreamSim, an extensive bench-
mark for the evaluation of generated images w.r.t. human
preference alignment. Their dataset is composed of 20k
synthetic image triplets with a reference image as well as
two other images, where the user decided which is more
similar to the reference. Their dataset covers various aspects
of similarity, such as pose, perspective, foreground color, the
number of items, and object shape. Using this dataset, they
learn their perceptual metric using an ensemble of networks
to encode each of the triplet images, calculate the cosine
similarity between each image to the reference, followed
by a triplet loss. They show their learned network is able
to make more human-aligned judgments compared to e.g.,
CLIP. On the other hand, previous methods did not rely
on an ensemble configuration, increasing the computational
cost of DreamSim.

In DreamBooth [68], a combination of three metrics is
used to evaluate the generation of multiviews of an object.
To assess image quality, they compared a generated image
with the ground truth image of the same view using the
cosine similarity of CLIP [27] and DINO [83]. Hereby, the
CLIP-based metric only requires the images to show the
same subject to return high similarities, whereas the DINO-
based metric was included to measure more fine-grained
differences. Lastly, they use the cosine similarity of CLIP
embeddings of the generated image and the corresponding
text prompt to measure prompt fidelity.

3.2 Content-based Metrics
Content-based metrics evaluate the generated image di-
rectly based on its content, rather than the image’s projection
into an embedding space (see Section 2.2.1). This also allows
for a decomposition of the evaluation of single aspects
of the image quality like object accuracy (OA), spatial re-
lationships (S), non-spatial relationships (NS) or attribute

bindings (AB). In the following, we will discuss multiple
content-based metrics.

3.2.1 Text-Image Content Matching
SeeTRUE(VNLI) [56] is a metric that involves fine-tuning
multimodal models such as BLIP2 [29] and PaLI-17B [84],
trained on 110K text-image pairs with binary alignment
labels. It determines if an image ”entails” a description with
a ”yes” or ”no” answer, and a higher ”yes” response rate
implies stronger alignment. A key limitation is its black-
box approach, making model refinement challenging and
evaluation trust problematic. In response, Mismatch Quest
[22] offers an end-to-end trainable method with both visual
and textual feedback in T2I models to pinpoint and clarify
alignment issues. It produces a broad training set with both
aligned and misaligned image-text pairs, employing LLMs,
visual grounding models, and POS Tagging to synthesize
misalignments. This TV-Feedback training set allows feed-
back models to provide visual (bounding box) and tex-
tual misalignment explanations. Evaluated on the SeeTRUE
Feedback dataset with 2,008 human annotations, it aligns
well with human assessments, though it may struggle with
multiple misalignments.

In difference to the fine-tuned metrics of Mismatch Quest
and SeeTRUE(VNLI), other metrics are utilizing VQA mod-
els to generate an evaluation score for generated images.
They especially utilize these VQA models for evaluation of
disjoint parts of the image prompt, making them belong to
the category of compositional metrics.

The Decompositional-Alignment Score (DA-Score)
by [59] evaluates T2I alignment by breaking down
image prompts to address the limitation that models
like CLIP might overlook misalignments, especially with
complex prompts. DA-Score divides prompts into separate
assertions, assessed individually by a VQA model (BLIP),
providing insights into the generative model’s strengths and
weaknesses and facilitating optimization in the diffusion
process by modulating low-scoring assertions’ cross-
attention. The authors show DA-Score aligns better with
human evaluations than metrics like CLIP [31], BLIP [28],
and BLIP2 [29], notably for intricate prompts. Nonetheless,
both SeeTRUE(VQ2) and DA-Score need precise prompt
crafting to evaluate image aspects, highlighting the
importance of choosing a suitable evaluation dataset.

Hinz et al. [53] propose the Semantic Object Alignment
(SOA) metric, aimed at addressing challenges in complex
and multi-object scenes in generated images. They employ
a pre-trained detection model to find prompted objects in
pictures, sampling captions from the COCO validation set
that name one of 80 primary object categories. Their user
study reveals that SOA closely matches human rankings,
unlike metrics such as the Inception Score. Similarly, Gri-
mal et al. [21] introduce the Text-Image Alignment Metric
(TIAM) for evaluating the alignment between images and
prompts using a pre-trained segmentation model. They
craft prompts using a template enhanced with word labels
and optional attributes, assessing color attributes at a 40%
detection threshold within segmentation masks. Utilizing
YoloV8, trained on 80 COCO classes, they recommend
prompts beginning with ”a photo of” to ensure realistic
image synthesis. Their findings show a stronger correlation
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with human evaluations compared to earlier studies [27]
and [28]. However, both studies encounter limitations when
applied to generative models that produce diverse styles,
such as cartoons or sketches, and are limited by the training
classes. A notable issue is the potential overlap between
models used for generation and evaluation, as a recent
study [20] points out, highlighting that SOA shares the same
pre-trained detector with CPGAN [85], leading to possible
overfitting and biased evaluation. A suggested remedy is to
change the detection model used during evaluation.

The authors of VISOR [32] found that many existing
models struggle with the challenge of generating multiple
objects, and even when successful, they often fail to capture
spatial relationships described in the input text prompts.
They propose three variants of the VISOR metric: VISOR,
VISORN , and VISORcond. These metrics first rely on detect-
ing objects that have been mentioned in the text prompt
using a pre-trained object detector and the centroids of de-
tected bounding boxes for deriving depicted relationships.
The VISOR metric returns 1 if all objects are present in
the image with correct spatial relationships; otherwise, it
returns 0. VISORN adopts a distribution-based approach,
assessing the model’s ability to generate at least n spatially
correct images based on the VISOR score for a given text
prompt mentioning spatial relationships. Finally, VISORcond

evaluates the conditional probability of generating correct
spatial relationships, given that all objects are generated ac-
curately. This means that object accuracy does not influence
the VISORcond metric.

Dinh et al. [20] propose two metrics for evaluating
T2I generation: Positional Alignment (PA) and Counting
Alignment (CA). PA evaluates how generated images align
with positional details in text by defining positional words
(W ) like ”above” and ”below.” Meanwhile, CA assesses a
T2I model’s accuracy with counting details in text, focusing
on object numbers in images. These metrics shed light on
how well images align with text, despite some challenges
in capturing all positional and counting subtleties. The
authors suggest T2I evaluation should consider various
factors. They propose a framework that combines multiple
evaluation aspects, termed a ”bag of metrics,” which is
shown to offer more consistent rankings with real images
and human assessments.

Similar to this approach, [52] introduced the 3-in-1 met-
ric for evaluating attribute bindings, spatial relationships,
and non-spatial relationships like ”look at,” ”hold,” and
”play with” in T2I models. This metric combines three
evaluation criteria to thoroughly analyze image content. For
attribute bindings, the ”Disentangled BLIP-VQA” method
is used because typical VQA assessments often misinterpret
object-attribute links. It divides complex prompts into single
attribute-object questions to avoid confusion in VQA. The
UniDet model examines spatial relations such as ”next to,”
”near,” ”on the side of,” and directions like ”left,” ”right,”
”top,” and ”bottom.” Non-spatial relations are assessed with
CLIPScore [31], rounding out the 3-in-1 metric.

In their paper Yuksekgonul et al. [30], the authors aim to
elucidate how Visual Language Models (VLMs) encode the
compositional relationship between objects and attributes.
To achieve this goal, they introduce the Attribution, Rela-
tion, and Order benchmark. This benchmark evaluates the

VLM’s comprehension of object properties and relations
using the Visual Genome Attribution and Visual Genome
Relation datasets, respectively. They evaluated order sen-
sitivity using COCO [86] and Flicker30k [74]. The authors
emphasize a critical issue regarding contrastive pretraining
in VLMs, which tends to prioritize learning low-level fea-
tures over higher-level compositional structures. To address
this challenge, the authors propose composition-aware hard
negatives, which they integrate into CLIP’s contrastive ob-
jective [27]. These hard negatives are generated by altering
linguistic elements such as nouns and phrases in negative
captions. During training, when assembling a batch of im-
ages and their corresponding captions, the authors include
not only the original images but also strong alternatives.
Through their evaluations, the authors assert that integrat-
ing the proposed alternatives improves the comprehension
of VLMs’ composition and order.

The Visual Instruction-guided Explainable Score (VI-
EScore) proposed by Ku et al. [62] is composed of the
perceptual quality (PQ) and the semantic consistency (SC)
score. Both scores are based on the instruction of an LLM
using hand-crafted prompt templates to reason about a
given image.

LLMScore, introduced by Lu et al. [61], is the pioneering
method utilizing LLMs for automatic T2I evaluation, ap-
plied in an image-to-text way. Initially, BLIP2 is employed
for image captioning, creating a broad image description,
followed by local reasoning focused on objects. Grit [36]
identifies object crops within the image and provides a tex-
tual description for each region. GPT-4 [33] then integrates
the global and local text descriptions, developing an object-
centric visual description. The LLMScore’s evaluation aim
can be redirected, as shown by Lu et al. , who illustrate both
scoring and error-checking goals. The visual description and
evaluation directive are sent to GPT-4, returning the final
LLMScore with a rationale. However, captions made by
LLMs might introduce extra details invented by the LLM
itself, not generated from the image captioning, possibly
causing incomplete integration of the original prompt’s
requirements and input.

Visual Concept Evaluation (ViCE) is a metric intended
to mimic human-like comprehension of visual concepts,
allowing for direct concept generation upon prompt inspec-
tion. Like other VQA approaches, ViCE utilizes GPT-3.5-
turbo [33] to form question-answer pairs from prompts. It
starts with 15 initial questions to an LLM to interpret visual
concepts. This method uniquely allows the model to seek
extra details for refining its image understanding. After
the initial responses, the LLM iteratively inquires about
further information until the model achieves a satisfactory
comprehension of the image, thus verifying the semantic
relationships of objects. The final analysis of the visual
image is executed by a BLIP2-based VQA model, which
evaluates the image using the prior question-answer pairs.

In the work of Hu et al. [55] they propose a metric
called TIFA that uses VQA models to measure the faith-
fulness of a generated image. To do so, they generate
multiple-choice question-answer pairs utilizing GPT-3 [87]
via in-context learning and apply verification of the gener-
ated questions using a multitask question-answering model
called UnifiedQA [88]. TIFA adopts an open-domain pre-
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trained vision language model (the authors recommend
using mPLUG-large [89]) as a VQA model, rather than
closed-class classification models fine-tuned on VQAv2 [90]
enabling it to perform well on a diverse set of visual ele-
ments. However, limitations of TIFA are the dependency on
12 categories: object, activity, animal, food, counting, color,
material, spatial, location, shape, attribute, and other, which
are considered to generate question-answer pairs.

In the work of Lin et al. [57] VQAScore is proposed
where the input to the model is an image I and a question
Q in the following format: ”Does this figure show {text}?
Please answer yes or no.” where {text} is the prompt used
to generate the image I . They fine-tuned a VQA model to
predict the answer likelihoods adopting a pre-trained bidi-
rectional encoder-decoder language model, FlanT5 [91] and
combined it with a pre-trained CLIP vision encoder. In their
evaluation on several alignment benchmarks [13], [23], [55],
[92], [93] they outperform models trained with extensive hu-
man feedback and divide-and-conquer methods. However,
since VQAScore outputs the probability P (Y es|I,Q), it
does not provide any reasoning accompanying the predicted
score.

The MINT-IQA (Multimodal INstruction Tuning Image
Quality Assessment) model proposed by Wang et al. [58]
evaluates and explains human preferences for the genera-
tion of text-conditioned images in multiple dimensions such
as quality, authenticity, and text-image correspondence. The
model utilizes a vision-language instruction tuning ap-
proach, allowing for a deeper understanding and a more
comprehensive evaluation of human visual preferences. Ex-
tensive experiments show that MINT-IQA achieves state-of-
the-art performance on both AI-generated and traditional
image quality assessment databases, underscoring its adapt-
ability and the breadth of its applicative power.

3.2.2 Image-Text Content Matching
To assess T2I alignment, it is essential to consider its inver-
sion. Prior to the development of CLIP, T2I was evaluated
inversely, through image-to-text alignment. This approach is
key in image caption or description generation tasks, where
the task is to assess the textual output for a provided image.
Datasets like Flickr8K [94], Flickr30K [74], MS-COCO [73],
[86], and Pascal 50S [37] offer human assessments of cap-
tions for given images, and serve as benchmark datasets
for image-to-text evaluation, leading to the development of
various visio-linguistic metrics. Below, we outline the image
captioning and machine translation metrics that influenced
text-conditioned image generation evaluation before the
advent of compositional quality metrics.

The SPICE metric (Semantic Propositional Image Cap-
tion Evaluation) [38] evaluates the semantic details of text
generated for image captions by converting both gener-
ated and reference sentences into scene graphs of objects,
attributes, and relationships, comparing them using an F-
score. Conversely, the LEIC metric (Learning to Evaluate
Image Captioning) by Cui et al. [39] leverages a CNN for im-
age coding and an LSTM for text coding, utilizing a binary
classifier to compare generated text quality with human
judgment, potentially mirroring human assessment more
closely than conventional metrics. TIGEr (Text-to-Image
Grounding for Image Caption Evaluation) [40] improves

evaluations by integrating text-image grounding to con-
sider image content, showing better alignment with human
judgment than word-based metrics such as BLEU, ROUGE,
and METEOR. Furthermore, VIFIDEL [41] assesses visual
fidelity by matching objects detected in images with their
textual descriptions using word’s mover distance (WMD),
translating it into a similarity measure to check the match
between object types and descriptive words, allowing for
object priority based on word frequency in reference texts.

In the work of Lee et al. [42] they propose a metric
called ViLBERTScore, which is similar to BERTScore [95]
that computes textual embeddings for a reference and a
generated caption. Additionally, the computation of textual
embeddings is conditioned on the target image using the
model proposed by Lu et al. [96]. Hereby, contextual em-
beddings are computed by applying an object detector to
the target image and feeding pairs of image region features
and text embeddings to the pre-trained ViLBERT model.
Finally, the ViLBERTScore is defined by the cosine similarity
between reference caption embeddings and candidate cap-
tion embeddings.

Common metrics for machine translation and image cap-
tioning model evaluation are utilized in text-image retrieval
tasks. The CIDEr score [37] assesses how closely a gener-
ated sentence matches a set of human-written references
for an image. This involves TF-IDF weighting to highlight
distinctive n-grams and calculating cosine similarity over
different n-gram lengths to produce a normalized score.
BLEU [97] calculates machine translation quality via n-gram
precision between a candidate and human translations, with
values from 0 to 1—a perfect score of 1 is rare, yet it
is favored for its alignment with human evaluations and
efficiency. ROUGE [98], initially for text summaries, eval-
uates recall with n-grams, incorporating longest sequences
and skip-bigram co-occurrence, aligning well with human
preferences. METEOR [99] enhances BLEU by integrating
precision and recall through unigram matches, including
stems and synonyms, offering better human judgment cor-
relations. Finally, BertScore [95], leveraging BERT [100],
measures textual quality via cosine similarity of word em-
beddings, effectively capturing semantics and context, and
showing strong human judgment alignment.

3.3 Image-Only Quality Metrics

3.3.1 Distribution Metrics
A set of popular evaluation metrics assumes that the gen-
erative model is a black box and operates only on sam-
ples of the generated distribution q and compares it with
samples of the target distribution p. The most commonly
used metrics then rely on comparing features produced by
pre-trained neural networks. Inception Score (IS) [18] uses
an Inception network pre-trained on ImageNet to compare
class predictions for a set of generated samples x ∼ q. Here,
the score rewards low entropy in class predictions p(y|x),
i.e., generated images that can be clearly classified as one
of the classes, as well as high entropy in marginal class
distribution p(y), i.e., a large diversity among generated
samples. Due to its short-comings [101], the IS has recently
lost popularity. The MODE score [102] improves the IS by
adding another term that rewards a similar distribution of
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class predictions for the generated and target images. IS-
based metrics are not suitable for T2I, as the marginal class
distribution p(y) is typically not available.

The Fréchet Inception Distance (FID) [19] compares the
means and co-variances of the features, extracted by the
Inception network from samples of the generated and target
distributions, using the Fréchet distance (or Wasserstein-2).
FID was shown to be a more consistent quality measure
than IS and is still widely used. MiFID [63] extends FID
by incorporating a term that penalizes the memorization
of training samples, by computing the minimum cosine
distance of Inception features to the training dataset. This
penalty was introduced to avoid bogus submissions for an
image generation competition.

All Inception-based metrics share the downside of rely-
ing on the weights of the Inception network. Those weights
are the result of supervised ImageNet classification training,
and many of the Inception metrics are not robust to different
sets of weights obtained from similar trainings [101]. Fur-
thermore, with the increasing scale of modern T2I models
and datasets [11] far beyond the ImageNet domain, the fea-
tures trained to classify this comparatively narrow domain
may be insufficient for quality assessment. Adoption of a
more capable and general feature extractor, such as semi-
supervised models, could improve the reliability of metrics
like FID, especially for models exceeding the ImageNet
domain.

Distributions p and q can be compared using kernel
embedding methods, notably the maximum mean discrep-
ancy (MMD) metric, which quantifies the distance between
kernel embeddings of samples without the need for density
estimation or bias correction, a significant advantage over
information-theoretic approaches. However, the reliance on
a fixed kernel in MMD can lead to issues when dealing with
complex natural images. The Parzen window estimate [103]
is an example of an MMD approach, while the Kernel
Inception Distance (KID) [64] improves upon this by calcu-
lating the squared MMD between Inception representations,
thus addressing the bias present in the Fréchet Inception
Distance (FID) related to sample size. Another method for
comparing distributions is through two-sample tests, such
as the C2ST introduced by Lopez-Paz and Oquab [65],
which employs a binary classifier to differentiate between
samples from the generated and target distributions, aiming
for approximately 50% accuracy with large sample sizes.
This approach can be enhanced using a nearest-neighbor
classifier, providing insights into the generated data; for
instance, a predominance of generated images among the
nearest neighbors may indicate mode collapse. C2ST is
versatile, applicable to both nearest-neighbor and neural
network-based classifiers, including those using pre-trained
feature extractors such as ResNet-34 [104].

The previously introduced image-based metrics quan-
tify image generation quality with a scalar score. Sajjadi
et al. [66] introduce precision and recall for distributions
(PRD), where precision is the proportion of generated im-
ages in the target distribution p, and recall is the proportion
of real images in the generated distribution q. They analyze
Inception embeddings of p and q with clustering of k-
means and comparison of histograms. Clusters dominated
by generated or target distribution samples affect precision

and recall, respectively. They compute these metrics using
multiple randomized clusterings. Kynkäänniemi et al. [69]
enhance this method (I-PRD) by modeling the support man-
ifold using hyperspheres around each embedding sample,
allowing direct computation of precision and recall.

In the work of Ravuri et al. [67] the Classification Accu-
racy Score (CAS) is proposed. It is based on predictions for
real images of a ResNet image classification model trained
on synthetic data. The performance accuracy for the set of
real images is referred to as CAS, and it is demonstrated that
CAS can identify classes for which a GAN failed to correctly
learn its data distribution.

3.3.2 Single Image Quality Metrics
Gu et al. [70] proposes GMM-GIQA, which models the
embeddings of the target distribution p using a Gaussian
mixture model. A generated image can then be assigned
a score based on the probability density of its embedding.
The authors note, however, that the metric may fail for
too complex distributions, as they cannot be sufficiently
modeled using a Gaussian mixture model.

With CLIP at the center, Wang et al. [71] proposes the
CLIP Image Quality Assessment (CLIP-IQA) benchmark. In
their work, they improve CLIP’s ability to assess text-image
alignment through antonym prompt pairing and removing
the positional embedding from the image encoder. The
resulting model is significantly better for evaluating quality
and abstract perception.

With the introduction of the LAION Aesthetics
dataset [11], the authors trained models1 to predict how
aesthetic humans would rate a given generated image,
resulting in an image quality metric that is aligned with
human preferences.

Zhang et al. [16] collects a dataset containing human-
annotated segmentation of artifacts. They then train binary
segmentation models to automatically detect such artifacts
in images. They also propose a related metric to evaluate in-
painting using generative models, the Perceptual Artifact
Ratio (PAR) [17], also known as PAL4InPainting, which
measures the relative area occupied by artifacts. This metric
is also generally applicable to full images, not just regions
for in-painting.

Since the I-PRD method yields only a binary result for
an individual sample, Kynkäänniemi et al. [69] proposes a
variant, KPR, which estimates how close the feature vector
of a single image is to the feature vectors of k-NN real
images.

Karras et al. [72] introduces the perceptual path length,
a metric for latent variable models. The idea is to pairwise
compare subsequent images in a latent space interpolation
using a perceptual image quality metric. This metric mea-
sures whether any drastic changes appear for close latent
codes and rewards smooth transitions within the interpola-
tion, which is an indicator of good disentanglement.

4 DATASETS

This section provides an overview of datasets used to
evaluate text-conditioned image generation, see Table 3.

1. https://github.com/christophschuhmann/improved-aesthetic-predictor

https://github.com/christophschuhmann/improved-aesthetic-predictor
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Dataset Year Cites/Year
Number of Avg.

Source
Text Compositionality

Images / Number Number Spatial Non-Spatial Attribute
Text-Image Pairs Words Objects Relations Relations Binding

Image Captioning

SBU Captioned Photo Dataset [105] 2011 118 1,000,000 Flickr.com
Pinerest40M [106] 2016 6 40,000,000 10 Pinerest.com
Conceptual Captions [107] 2018 381 3,369,218 10.3 World Wide Web
nocaps [108] 2019 59 15,100 10 Open Images V4 (Flickr.com)
Conceptual 12M [109] 2021 266 12,423,374 20.2 World Wide Web
UIUC Pascal Sentence Dataset [110] 2010 61 1,000 n.a. VOC2008
Flickr8K [94] 2013 134 8,092 n.a. Flickr.com
Flickr30K [74] 2014 265 31,783 n.a. Flickr.com
COCO Captions [73] 2015 284 204,721 11 Flickr.com
PASCAL-50S [37] 2015 544 1,000 8.8 VOC2008
ABSTRACT-50S [37] 2015 544 500 10.59 ASD [111]

Visual Question Answering

VQA [112] 2015 668 254,721 < 2 MS COCO & Abstract Images
VQAv2.0 [90] 2017 425 204,721 n.a. MS COCO
VCR [113] 2019 167 110,000 11.8 LSMDC [114] & YT

Compositionality Benchmarks

DrawBench [92] 2022 1859 200 11.69 DALL-E, [115], Reddit
PaintSkills [116] 2023 78 65,535 n.a. synthetic prompts
ABC-6K [117] 2022 96 6,400 n.a. MS COCO
CC-500 [117] 2022 96 500 n.a. synthetic prompts
I2P [118] 2023 117 4,703 20.56 user generated prompts
Visual Genome [119] 2016 696 108,077 n.a. MS COCO
Winoground [23] 2022 129 800 8.99 Getty Images API
RichHF-18K [51] 2024 54 18,000 n.a. Pick-a-Pic [13]
T2I-CompBench [52] 2023 83 6,000 8.98 generated prompts by GPT [33]

TABLE 3
Comparison of text-image datasets based on the number of prompts, prompt length, compositional aspects of the prompts, and the context of the

dataset provided in their textual data.

First, we compare datasets that originated from the image
captioning research community, which were first used to
evaluate text-image generation systems. With recent devel-
opments of vision-language models, researchers started to
seek increased complexity of evaluation data resulting in
the emergence of the term visiolinguistic compositionality.
It describes the task and datasets to evaluate the ability of
vision and language models to conduct reasoning of image
and text that are subject to compositionality, meaning that
they are ensembles of several contents. Second, we com-
pare existing visual question answering (VQA) benchmark
datasets, and finally, we list specifically designed datasets
for the development of text-image quality metrics and their
verification on human judgments.

The ranking system in Table 3 evaluates prompts based
on their source and complexity, assigning points from zero
to three. Zero points are given for basic object, relation,
and attribute labels, providing minimal information. One
point is awarded to prompts derived from web scraping,
offering a bit more context. Two points go to the prompts
obtained through crowd sourcing, reflecting a higher level
of detail and relevance. The highest score, three points,
is reserved for prompts that accurately reflect the actual
compositional intentions behind an image, showcasing the
deepest understanding and context.

4.1 Image Caption Datasets

The development of image generators requires tremendous
amounts of image data [120], [121] in order to learn data
statistics and fit the output distribution of the generator to
real image distributions. In the context of the evaluation
of T2I generation, the necessity of text-image pairs arises.
Fortunately, there already exist such datasets collected from
researchers in the image captioning research domain, e.g.,

MS-COCO Captions [73], Flickr30K [74], [75], PASCAL-
50S [37], Abstrac-50S [37], which curate one to fifty human-
generated descriptions per image.

The UIUC Pascal Sentence Dataset [110] and
Flickr8K [94] are among the first well-known image caption
datasets, each providing multiple descriptions per image.
Hodosh et al. [94] approach image description evaluation
as a ranking task, including a collection of 8, 092 images
from Flickr and 1, 000 from PASCAL VOC-2008 [122], each
described by human annotators. Rashtchian et al. [110]’s
crowdsourcing methodologies were used, collecting five
descriptions per image through Amazon Turk. Participants
generated single-sentence descriptions, focusing on central
characters, settings, and object relations, using adjectives
for attributes like color or emotion, in fewer than 100
characters. Another user group checked spelling and
grammar to ensure high-quality descriptions. Later, Young
et al. [74] expanded the Flickr8K dataset to 158, 915
captions covering 31, 783 images, and called it Flickr30K.
Further, Plummer et al. [75] proposed extensions involving
cross-caption coreference chains linking the same entities
across image captions, with bounding boxes localizing
these entities.

The SBU Captioned Photo Dataset [105] collects one mil-
lion images from Flickr.com ensuring some quality require-
ments; in particular, they filter the collected data for textual
descriptions with a satisfactory length of visual description,
at least two words belonging to (objects, attributes, actions,
stuff, and scenes) and at least one preposition indicating vis-
ible spatial relation. While the dataset poses a tremendous
amount of image-text pairs, the content of image captions
may be visually descriptive but lacks human-supervised
verification, resulting in many image captions being only
comprehensible with personal knowledge of the caption’s
author, e.g., using the given name of a dog for describing a
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dog playing with a ball.
Based on Microsoft COCO [86], which is a large-scale

dataset consisting of images acquired through Flickr show-
ing multiple objects in their natural context, the frequently
used COCO Captions [73] dataset was created. It sup-
plements MS-COCO by collecting 1, 026, 459 captions for
164, 062 images, including five captions for each image in
MS-COCO and a subset of 5, 000 images that were anno-
tated with 40 reference sentences. Together with the actual
dataset, the authors released an evaluation protocol; in par-
ticular, they deploy an evaluation server ensuring consistent
evaluation computing numerous metrics like BLEU [97],
ROGUE [98], METEOR [99] and CIDEr [37].

In the work of Vedantam et al. [37] two datasets are
collected, PASCAL-50S and ABSTRACT-50S based on the
UIUC Pascal Sentence Dataset and the Abstract Scenes
Dataset [111], respectively. Annotations for these datasets
were collected with the goal to investigate consensus be-
tween human annotators, in particular the similarity be-
tween a candidate image description and several refer-
ence descriptions. While PASCAL-50S features real images,
ABSTRACT-50S consists of images in a clip-art style de-
signed by humans in a different crowdsourcing study [111].
For both datasets, 50 human-generated sentences are col-
lected while annotators are instructed to provide descrip-
tions that should help others recognize the image from
a collection of similar images. Having a large set of fifty
reference sentences per image facilitates research on text-
image alignment; however, the amount and variety of im-
ages provided by both datasets seem too few in order to
provide complexity for profound text-image evaluation.

Increasing the number of object classes is achieved by
the image dataset called, nocaps. It consists of over 600
object classes, and it is presented in the work of Agrawal
et al. [108], which is based on OpenImages V4 [123] a large-
scale human-annotated object detection dataset. Nocaps was
acquired by filtering Open Images and excluding images
with non-zero or unknown image rotations, instances from
a single object category, less than six unique object classes,
and finally they apply a balancing scheme to have an even
distribution of images depicting two to six unique object
classes, avoiding frequently occurring object classes.

Mao et al.’s [106] introduction of the Pinterest40M
dataset represents a significant advancement in multimodal
word embeddings, featuring over 40 million images and
300 million sentences from Pinterest.com. Far exceeding the
scale of existing datasets like MS COCO, Pinterest40M’s
unique blend of visual and textual data enables the devel-
opment of richer word embeddings. Further, this dataset
serves as a vital resource for exploring vision-language pre-
training methods [124]–[126].

The Conceptual Captions [107] dataset is derived from
automated web crawling. This enables the collection of
numerous image-text pairs, but stringent filtering is crucial
to retain only high-quality content. Images are eliminated
based on encoding, dimensions, aspect ratio, and inappro-
priate content. Given that Alt-text from HTML pages may
lack detailed accuracy, it is refined using part-of-speech,
sentiment, and inappropriate annotation analyses via the
Google Cloud Natural Language APIs. For improved text
quality, criteria such as noun and preposition frequency, to-

ken repetition, capitalization, English Wikipedia token like-
lihood, and known prefixes like ”click to enlarge picture” or
”stock photo” are applied. Image-text filtering with Google
Cloud Vision APIs is conducted, matching text tokens with
image content and replacing proper names with hypernyms
through hypernymization. This dataset, containing over 3
million image-text pairs, is intended to support diverse
downstream image captioning tasks but is predominantly
used for vision-language pre-training [109].

To facilitate image-text pre-training, Conceptual
12M [109] was acquired by relaxing filter criteria of the
collection pipeline used for Conceptual Captions. This
strategy trades precision of image descriptions for increased
scale of the data corpus; in particular, they increase the recall
of visual concept descriptions by lowering requirements
of word repetitions, caption size ranges, image aspect
ratios, and hypernymization. Just as Conceptual Captions
and Pinterest40M, such web-sourced image descriptions
enable vision-language pre-training but lack the quality
and complexity for proper evaluation of T2I generation
methods.

4.2 Visual Question Answering
The Visual Question Answering (VQA) dataset [112] is a
groundbreaking tool, merging 123,287 MS COCO images
and 50,000 abstract scenes with over 760,000 questions
and 10 million answers collected via Amazon Mechanical
Turk. This resource tests VQA models’ abilities to inter-
pret complex visual inputs, featuring a broad array of
questions and answers reflecting real-world linguistic and
visual diversity. For each image, five open-ended questions
are presented, necessitating sophisticated visual recognition,
commonsense understanding, and inferential thinking, with
ten possible answers per question to encompass the range
of human responses. VQA v2.0 [90], an enhancement of
VQA, addresses this by adding complementary images per
question, forming question-image pairs with two distinct
answers each. By doubling the dataset size, Goyal et al.
tackle the issue of VLMs neglecting visual cues, crafting
a model that can answer an image-question pair while
providing a counterexample-based explanation.

The Visual Commonsense Reasoning (VCR) dataset [113]
is specifically designed to move beyond mere recognition
tasks to test models on cognition-level visual understand-
ing. It features 290,000 question-answer-rationale (QAR)
triples across 110,000 unique movie scenes. Each QAR triple
challenges models to not only identify objects within a scene
but also to understand complex interactions and motiva-
tions. The dataset focuses on deep visual comprehension,
requiring models to infer and rationalize about unseen
aspects of the image, thus bridging the gap between visual
perception and commonsense reasoning. VCR is frequently
used as a downstream task for evaluating representation
learning of visual-linguistic approaches [42], [78], [127],
[128].

4.3 Compositionality Benchmarks
Thrush et al. [23] introduce Winoground, a new task and
dataset for assessing vision and language models in visio-
linguistic compositional reasoning. It requires matching two
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images with two captions, each with the same words in a
different order, demanding precise modal understanding.
Winoground, from the Getty Image API, involves human
annotators creating creative captions and choosing corre-
sponding images, tagging visual reasoning into object, re-
lation, or both swaps. Winoground includes 1,600 pairs (400
examples), with 800 correct and 800 incorrect, featuring 800
unique images and captions. It prioritizes expert-quality
annotations, serving as a probing dataset for linguistic and
visual analysis.

The Visual Genome dataset [119] is a dataset for com-
prehensive scene understanding. It contains more than 108k
images, each with an average of 35 objects delineated by
a bounding box. However, bounding box annotated objects
are not sufficient for comprehensive scene understanding.
Object attributes and their relationships are also needed.
To obtain these, about 50 overlapping image sub-regions
per image have been captured by human annotators. From
those, object attributes and relationships could be extracted,
which in turn are used to create image scene graphs and
additional question answer pairs. Object attributes and rela-
tionships are canonicalized on WordNet synsets [129].

T2I-CompBench [52] is a compositional dataset targeting
to provide complex prompt compositions in order to study
attribute binding, object relations, and complex composition
skills of image generation models. Therefore, they acquire a
dataset consisting of 6,000 text-image pairs (1,000 for each
sub-category: color, shape, texture, spatial relation, non-
spatial relation, complex composition). Text prompts for
color attribute binding are gathered from CC500 [117] and
COCO [73], while for the remaining sub-classes prompts
are generated by GPT [33] or handcrafted using prompt
templates.

RickHF-18K dataset [51] comprises 18,000 image-text
pairs from the Pick a Pic dataset [13]. Each image in-
cludes human-provided annotations: two heatmaps indi-
cating artifact/implausibility and misalignment, four scores
(plausibility, alignment, aesthetic, and overall quality), plus
text for misaligned keywords. To ensure photorealism and
balance across classes, the PaLI visual question answering
model evaluates realism, selecting images from these five
classes: animal, human, object, indoor scene, and outdoor scene.
Heatmaps are generated by averaging annotators’ key point
data related to artifact and misalignment. This dataset sup-
plies intricate annotations to fine-tune scoring models with
human feedback. Nonetheless, with only 27 annotators and
around 3,000 rater-hours, concerns arise about annotation
quality and the reliability of a limited rater pool.

DrawBench is a dataset proposed by Saharia et al. [92],
developed alongside the Imagen model. It comprises a
challenging set of 200 prompts designed to evaluate T2I gen-
erators across 11 categories, aimed at investigating various
abilities such as colors, numbers of objects, spatial relations,
text in the scene, unusual interactions between objects,
misspellings, rare words, long prompts, and prompts from
Reddit, Gary Marcus et al. [115], and DALL-E [130]. Saharia
et al. [92] utilizes DrawBench to compare different T2I mod-
els; thus, they present generated images to human raters for
quantifying image quality and text-image alignment quality.

PaintSkills proposed by Cho et al. [116] constitutes a
dataset collected specifically to mitigate a statistical bias to-

wards a few common objects. Therefore, Cho et al. generates
a dataset carefully controlling three aspects (skills): object
recognition, object counting, and spatial relations resulting
in 65,535 scene configurations. By uniformly sampling from
a set of relations, PaintSkills ensures equally distributed
objects and relations. Finally, based on the scene configu-
rations, a 3D simulator is used to render images.

Feng et al. [117] proposes two datasets, Attribute Binding
Contrast (ABC-6K) and Concept Conjunction 500 (CC-500).
The former dataset is derived from MSCOCO, where Feng
et al. filters for sentences containing at least two color
words, and by switching the position of two color words,
they generate additional contrastive sentences, resulting in
a total of 6.4K sentences. CC-500 is generated by combining
two objects with their attribute descriptions, where each
sentence follows the same pattern, e.g. ”a red apple and
a yellow banana,” resulting in 500 sentences.

The Inappropriate Image Prompts (I2P) dataset [118]
targets safe latent diffusion by mitigating the problem
of models generating inappropriate images. Therefore,
Schramowski et al. collected 4,703 prompts from an on-
line source that distributes real-world human-generated
prompts together with SD [131] generated images and corre-
sponding generation parameters. Prompts are filtered based
on 26 keywords that correspond to one of seven inappropri-
ateness concepts, e.g. hate, harassment, violence, self-harm,
sexual content, shocking images, and illegal activity.

Holistic Evaluation of Text-to-Image Models
(HEIM) [132] is a benchmark dataset that evaluates
T2I models based on 12 aspects, e.g. alignment, quality,
aesthetics, originality, reasoning, knowledge, bias, toxicity,
fairness, robustness, multilingualism, and efficiency.
It combines several existing text-image datasets like
MSCOCO, DrawBench, PartiPrompts, Winoground,
PaintSkills, I2P, etc. to cover the evaluation of each aspect.

The goal of the SeeTRUE benchmark is to study text-
image alignment evaluation. The dataset builds on top
of several existing vision-language datasets: COCO Cap-
tions [73], SNLI-VE [133], DrawBench [92], EditBench [134],
Winoground [23] and Pick a Pic [13]. It includes 31, 855 real
and synthetic image-text pairs and corresponding human
annotations, where each binary annotation indicates align-
ment or misalignment of text and image.

5 OPEN CHALLENGES

Within this section, we highlight some of the open chal-
lenges that we discovered when reviewing the described
T2I quality metrics.
Uncertainty vs alignment quality. Measuring text-image
alignment focuses on relations between objects described
by a text. That includes spatial and non-spatial relations
between objects and their bound visual attributes. However,
these alignment-focused metrics are targeted to sense the
presence or absence of certain compositions in image space,
but are unable to quantify the quality of such detected
components (if present). Quality scores provided by VLM-
based metrics are defined on their visio-linguistic capabil-
ity providing quantitative reasoning in the form of class
probabilities for Yes or No answers to closed questions.
However, such a probability score merely indicates the
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degree of uncertainty rather than actual alignment quality.
Future measures should be designed to compute quantities
for detected compositions enabling them to rank alignment
quality on a component level rather than on the basis of
uncertainty scores.
Bags-of-word behavior. VLMs tend to behave like bags-
of-words [30], which is a phenomenon that describes a
model’s insensibility to word order and permutations of
object relations, e.g., the text-image alignment of the sen-
tences ”the goldfish is swimming in the aquarium” and ”the
aquarium is swimming in the goldfish” are scored similarly.
Such behavior is caused by the training objective applied
to pre-train VLMs. The contrastive pre-training optimizes
for image-text retrieval on large datasets, which does not
acknowledge compositional information and thus fails to
learn unique representations [30]. A step towards a solution
to this problem is hard negative samples [30], [47], where
existing prompts are transformed to represent negative com-
positional semantics by word or relation swapping, and are
included in the training set for fine-tuning.
VLM halucination. Many of the content-based T2I metrics
rely on the outputs of VLMs or LLMs that may contain
additional details fabricated by a language model rather
than actually represented by the image. Additionally, VLMs
show limited capability of understanding inputs of multiple
images, which may result in low correlation scores on image
editing tasks [62]. VLMs are good at generation task eval-
uation, but fail at image-to-image evaluation due to high-
level feature focus [62]. Limited context size may reduce the
capability of understanding complex text inputs, resulting
in discrepancies when mapping an entire image to sparse
text tokens [135].
Dataset availability. Existing T2I datasets [74], [86], [106],
[107], [109] mainly originate from various online sources,
where image-text pairs are collected by applying heuris-
tics to filter the data, thereby often trading quality for
quantity. Otherwise, high-quality image descriptions need
to be crowdsourced by human annotators, which is time-
consuming and costly. With increasing focus towards the
evaluation of visio-linguistic compositionality, the necessity
of compositional datasets intensifies [23], [136]–[138]. While
the evaluation on such complex datasets fosters the devel-
opment of compositional metrics, the active research in this
field seems to stick to a limited set of four compositional
aspects: object accuracy, spatial relations, non-spatial rela-
tions, and attribute binding. However, we consider this to
be a subset of a greater set which is yet to be explored; thus,
in the work of Dehouche [139] they apply GPT-3 [33] to
explore a set of 20 topics: e.g., medium, technique, genre,
mood, tone, lighting, artistic reference, which are derived
from human-generated prompts taken from Lexica2.

Further, benchmarking image generation is lacking com-
parability due to evaluation on individually proposed
datasets providing insights on specific topics. Although
there are widely adopted compositional datasets [23], the
size of such datasets limits the assumptions that can
be made regarding generalizability. However, creating a
comprehensive benchmark for compositionality evaluation
should be targeted in the near future.

2. https://lexica.art/

6 GUIDELINES

In the following, we provide guidelines for evaluating T2I
generation models based on our findings surveying the
literature. These guidelines are formulated with the goal to
help researchers and practitioners to make more informed
choices about which metrics and benchmark datasets to use
when working with T2I generation.
Select metrics based on relevant characteristics. Bench-
marking T2I generation involves measuring general image
quality and compositional quality (cf. Section 2). However,
what defines the image quality might depend on the target
application. For instance, in the domain of artistic image
generation (e.g., comics, anime, mangas, and paintings) an
image has to reflect certain art styles, drawing character-
istics, shapes, and colors. However, images do not need
to be photo-realistic and naturalistic. In order to capture
and measure such a large variety of abstract concepts, there
exist many visual quality metrics, see Table 2. Each of these
metrics is equipped with unique reasoning capabilities, such
as aesthetic and human preference prediction, perceptual
artifact localization, object recognition, object counting, spa-
tial relations, object attribute recognition, and many more.
Hence, reasoning skills for evaluation techniques need to
be selected carefully and the calibration of their priority is
crucial. Considering the use case of generating synthetic
images for pre-training object detection networks of real
images, one would need to ensure that the image generator
produces correct visual representations of described objects.
This necessitates metrics with strong object recognition and
object counting capabilities. As shown in Section 3, the
current state-of-the-art does not include a general purpose
metric satisfying a comprehensive evaluation of T2I gen-
eration. We provide a classification of metrics and their
capabilities, which can be used to make informed decisions
about which metric to use in a specific application context.
Select appropriate evaluation prompts. The underlying text
prompts are fundamental for evaluating T2I generation,
as they form the input to the image generator. Equally
important to selecting the right metrics is ensuring that
evaluation prompts include rich descriptions that cover a
broad set of visual concepts. Otherwise, there is no way
to obtain comprehensive benchmark results. In Section 4,
we provide an overview of the state-of-the-art datasets con-
taining image-text pairs with different levels of complexity.
Textual descriptions that originate from image captioning
datasets usually lack the range of visual concepts needed
for the evaluation of T2I generation. Using prompts that
do not cover the visual depictions to be measured can help
outperform other methods but render test results meaning-
less. Therefore, the collection of evaluation prompts needs
to represent authenticity, complexity, compositionality, and
representativity of textual descriptions with respect to the
target application.
Normalize prompts. The most recent diffusion-based image
generation models [140] can be used to synthesize realistic-
looking images of impressive quality. The data these models
were trained on may be subject to language bias, which
results in a biased image generator, e.g., specific sentence
formats, such as the absence of grammatical structure, cer-
tain keyword constellations, or artist names that are known

https://lexica.art/
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only by some models. In order to mitigate such bias, it
can help to normalize evaluation prompts by adopting the
strong rephrasing, summarization, and completion capabil-
ities of modern LLMs. In particular, LLMs can be used to
transform prompts to natural language, complete sentences,
and remove keywords. On top of this, further normalization
protocols may be applied. For some applications, it may
be beneficial to normalize prompt length since some text
encoder networks have limited token vector lengths. Hyper-
nymization, where a word is replaced by its hypernym (i.e.,
another word that describes it in a more general way, e.g.,
daisy and rose would be replaced by flower), is a method to
semantically normalize prompts [141]. However, this may
lower the variety of evaluation prompts. Furthermore, the
representation of numbers and dates can be brought into a
consistent format, e.g., Two dogs are playing with a ball. and 2
dogs are playing with a ball.
Set model parameters. As diffusion-based image generation
is sensitive to the selected seed for the initial noise sampling
during early diffusion steps, it is crucial to fix such seeds to
guarantee reproducibility. Further, some benchmarks com-
pare image generators that share an identical training pro-
tocol and have only small architectural differences or vice
versa. Utilizing identical seeds clarifies the contribution of
these changes. The image resolution used during training
can have a strong influence on image quality. Thus, it should
be configured appropriately and consistently throughout all
evaluated methods. This extends to the sampling method,
sampling steps, and guidance parameters. When the im-
age generation pipelines are properly configured for each
prompt in the evaluation set, a fixed number of N images
is generated, where N is equal to the number of model
parameter configurations. Higher numbers for N provide
increasingly robust performance results in exchange for
computational costs.

7 CONCLUSION

This survey provides an overview of the current state of
the art in evaluation metrics for T2I generation. First, we
introduced our taxonomy to categorize quality measures
based on the data they evaluate (images alone vs. text
and images), their scope (distribution of images vs. single
images), their operating data structure (embeddings vs.
content), and what they measure (general quality vs. com-
positional quality). Many widely adopted T2I metrics lack
the ability to assess the alignment between text and image,
and thus can omit important details during evaluation. To
develop the proposed taxonomy, we collected, reviewed,
and compared both established and emerging evaluation
metrics, acknowledging the trend toward compositional
quality metrics, which are sensitive to the prompt definition
and can detect and judge the model’s alignment quality
between image and text. Furthermore, we have reviewed
existing text-image datasets. Many of these datasets are
specifically tailored to benchmark visio-linguistic compo-
sitionality but possess an insufficient amount of data for
comprehensive T2I generation evaluation, thus lacking com-
positional evaluation features. Based on our observations
made, we further discussed open challenges of existing
evaluation methods. The importance of the quality metrics

reviewed extends even beyond the T2I domain. In fact, it is
fundamental for application areas such as text-to-video [93],
[142], [143], where multiple frames are generated for a single
text prompt, and text-to-3D, where image-based NeRF ap-
proaches and diffusion models produce 3D representations
for textual scene descriptions [134], [144]–[147]. In these
broader contexts, robust and reliable metrics are essential to
assess alignment and compositionality across more complex
or temporal data. Finally, based on all our findings, we
provide guidelines for the development of comparable and
meaningful evaluation protocols. These guidelines will en-
able consistent quality assessment and, thus, representative
T2I generation evaluation.
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✦

1 OPTIMIZATION

While T2I quality metrics are developed to judge the quality
of single T2I samples or complete T2I models, other tech-
niques can also be used to optimize the generated output.
In this section, we will review some of these techniques,
whereby we differentiate between those which require a
training process (see Section 1.1), and those which can be
used without additional training (see Section 1.2).

1.1 Fine-tuning Image Generators

The StyleT2I framework [1], which utilizes a CLIP-guided
contrastive loss, a semantic matching loss, and a spatial
constraint to refine attribute manipulation within intended
spatial regions, trains a StyleGAN [2] model to increase
compositional accuracy. This approach ensures more dis-
entangled latent representations that can be decoded into
a high-fidelity image aligned with the input text. In order
to find optimal latent codes, a Text-to-Direction module is
employed to predict the sentence direction that is aligned
with the input text, which is trained using a CLIP-guided
contrastive loss. To enhance attribute alignment, a Attribute-
to-Direction module is optimized by the semantic matching
loss that seeks to identify attribute directions of latent codes.
To mitigate the issue of changing multiple regions during
attribute alignment, a spatial constraint avoids spatial vari-
ations outside of a pseudo-ground-truth mask generated by
a segmentation model.

In the work of Dong et al. [3], called RAFT, a Stable Dif-
fusion model is fine-tuned on high-quality samples ranked
by a reward model. In a decoupled data generation process,
high-quality training data is sampled from the generator
by discarding low-quality data points, which is done by
utilizing a reward model to filter out those that exhibit unde-
sired behavior. In their experiments, they adopt CLIPScore
and LAION Aesthetic Predictor as reward models; however,
fine-tuning on training data produced by the generator hin-
ders the model from overcoming problems within distribu-
tion towards high-quality compositionality, which remains

Manuscript received January 28, 2025.

concealed outside the generator’s distribution. After train-
ing a reward model utilizing their proposed dataset, see ??,
Liang et al. [4] demonstrate fine-tuning a Muse image gen-
erator and compare it to the pre-trained Muse version based
on 100 generated test prompts. In their experiments, they
use Muse to generate a set of 100, 512 images for 12, 564
generated prompts, then they apply their reward scores to
filter out images below a certain threshold, and fine-tune
Muse. Finally, they quantify the gain from Muse fine-tuning
by conducting a study, where they present the two images
side-by-side originating from the baseline and fine-tuned
model. They were able to show that the fine-tuned model
produces significantly fewer artifacts/implausibilities than
the original Muse. A similar approach by Lee et al. [5]
collects binary decisions from human annotators for a large
set of generated images to train a reward model. Thus, they
are able to fine-tune Stable Diffusion via reward-weighted
likelihood maximization to better align it to human feedback
using 27K image-text pairs. In addition, AlignProp [6] is
following the idea of utilizing a reward model to supervise
the fine-tuning of Stable Diffusion with human feedback.

After such recent developments of reward models open-
ing a way towards incorporating human feedback into
the diffusion process, further approaches adopted reward
models, applying supervision during reinforcement learn-
ing. Thus, Fan et al. [7] propose DPOK, diffusion policy
optimization with KL regularization, which utilizes KL
regularization to stabilize RL fine-tuning and aligning T2I.
Unlike traditional supervised fine-tuning, which often de-
grades image quality, RL fine-tuning with DPOK optimizes
ImageReward [8] a feedback-trained reward model online,
leading to better alignment between text prompts and
generated images while maintaining high image fidelity.
The paper demonstrates that DPOK outperforms super-
vised fine-tuning methods in experiments, showcasing its
effectiveness in enhancing T2I diffusion models. However,
their work studies KL-regularization and primarily focuses
on training a different diffusion model for each prompt.
Denoising diffusion policy optimization (DDPO), proposed
by Black et al. [9] broadens the approach by training using
multiple prompts and showcasing the model’s ability to



PREPRINT 2

generalize to unseen prompts. The adaptability of DDPO
to various reward functions, including those derived from
vision-language models, marks its advance in enhancing
prompt-image alignment beyond the scope of human feed-
back optimization.

1.2 Training free Optimization

In their work, Liu et al. [10] introduce an approach called
Composable Diffusion Models, targeting the challenge of ac-
curately aligning compositional text prompts to their image
representation. Their method proposes a structured strategy
where an image is generated through the composition of a
set of diffusion models, each modeling different visual con-
cepts. By treating diffusion models as energy-based models,
they enable the explicit combination of data distributions
defined by these models. This approach assumes that the
visual concepts are conditionally independent given the
image. Sampling from the resultant distribution involves
using a composed score function that integrates the contri-
butions of each concept to the denoising process, allowing
for the generation of images that faithfully represent the
composed concepts. This allows for the generation of scenes
that are more complex than those encountered during train-
ing, effectively combining object relations and attributes
accurately. Feng et al. [11] introduces Structured Diffusion
Guidance, a method aimed at improving compositional T2I
generation through the use of scene graphs, which are
derived from the prompt. Instead of computing a text em-
bedding for a single sequence, this method extracts noun
phrases from the prompt corresponding to visual concepts
and entities, and encodes such noun phrases separately to
achieve region-wise semantic guidance. Finally, for each
cross-attention map, the average of all noun phrase ac-
tivations denotes the corresponding output. The method
Attend and Excite by Chefer et al. [12] introduces a training-
free approach called Generative Semantic Nursing (GSN),
which utilizes cross-attention maps from a Stable Diffusion
model [13] to enhance the representation of objects and their
attributes in images by maximizing attention values at sub-
ject regions during inference. This technique improves the
incorporation of subject tokens into the latent representation
through a loss objective that ensures high activations for
at least one patch per subject token. However, the authors
note that the timing of this optimization is critical, as ob-
ject spatial locations become fixed in the final denoising
steps, and they advocate for gradual latent refinement to
avoid image degradation. While GSN shows promise for
simple prompts, its effectiveness diminishes with increased
complexity, such as multiple entities with bound attributes.
Building on this, Li et al. ’s follow-up work, Divide and
Bind [14], employs total variation maximization to enhance
local changes in attention maps, promoting the emergence
of diverse object regions and enabling competing objects
during generation. They introduce two new objectives: one
for attending to object tokens and another for attribute
binding regularization, utilizing a finite differences approx-
imation of total variation to create activation patterns that
segment the image. Additionally, they normalize overlap-
ping object and attribute tokens in the attention maps and
maximize their symmetric similarity by minimizing the

Jensen-Shannon divergence [15]. The metric proposed by
Singh et al. [16], see ?? for further details, is able to detect
parts of the image that are not aligned with the prompt,
and when passing the relative importance of such parts to
a modified reverse diffusion process, it becomes possible
to improve T2I alignment. In their experiment, they can
show that by incorporating such relative importance in the
form of weighting factors through a combination of prompt
weighting and cross-attention guidance (Attend and Excite),
they can optimize T2I alignment. Layout control with cross-
attention guidance is achieved by Chen et al. [17], by intro-
ducing two techniques to incorporate object bounding boxes
to steer the diffusion process optimizing for spatial relation
alignment. This method enables control of image generation
by providing object bounding boxes to encourage the dif-
fusion model to generate corresponding objects within the
bounding box region of the image. The work proposes two
ways of layout guidance: forward and backward guidance.
The former method applies a smoothed window function
to the cross-attention maps, which increases activation for
corresponding object tokens inside the bounding box. The
second method, backward guidance, applies an energy-loss
function which is computed via back-propagation to update
the latent vector and therefore indirectly alter the cross-
attention maps. During image generation, they alternate
between denoising steps and gradient updates. While this
technique improves overall layout and provides control
over spatial relations, problems of standard diffusion ap-
proaches for object attribution remain and the question of
manual bounding box placement needs to be considered.

2 HUMAN PREFERENCE METRICS

In the following experiments, we investigate human prefer-
ences regarding text prompt generation and corresponding
diffusion-based image generation. Consequently, our first
goal is to inspect human-provided text prompts, investigat-
ing preferred styles, concepts, topics, sceneries, etc., which
we retrieve in a data-driven way from a large corpus of
human-provided data.

2.1 Dataset Acquisition
In order to collect a large-scale dataset consisting of human-
generated prompts along with generated images, we down-
loaded messages from the official Midjourney Discord
server. Each message contains information about a user-
generated text prompt, the corresponding generated image,
the author’s name, as well as links to preceding and suc-
ceeding user interactions. In this way, we were able to collect
8, 290, 132 text-image pairs.

2.2 Data-driven Prompt Categorization
To gain initial insights into the dataset containing various
prompts, we examined a subset and discovered that users
often use the same prompt multiple times with only minor
modifications to generate an image. This observation led us
to infer that users were dissatisfied with the initial image
generated, prompting them to modify the prompt in hopes
of achieving a more pleasing outcome. To understand what
users added to the prompts to enhance image generation,
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we conducted a detailed analysis of these modified prompts.
Establishing relationships between these prompts requires a
preliminary comparison of their similarity. To accomplish
this, we examined all prompts in the dataset and calcu-
lated CLIP embeddings for each individual prompt. With
these CLIP embeddings, we were able to compare prompts
using cosine similarity between the embeddings and con-
nect prompts with high similarity in a graph structure.
This enables us to understand user interactions with mul-
tiple prompts and their corresponding images produced by
Midjourney. Furthermore, we assume that the most recent
prompt, in terms of time, was considered the best variant
by the user, as it seemingly met their satisfaction, leading
them to cease modifications of the prompt. Subsequently,
we examined all final prompts from the prompt graphs
and created a dictionary to store the occurrences of each
individual word.

Fig. 1. This wordcloud visualize the occurrences of different words in the
final prompts

Then, we proceeded to analyze the most frequently
occurring words (cf. Figure 1) and defined categories for
the prompts. However, we exclude common words such
as ”a”, ”and” and ”the” as well as parameter keywords
specific to the Midjourney Engine, since they do not con-
tribute to differentiating between categories. The top five
most frequent words included general terms such as ”style”
(6096 occurrences), ”background” (5179 occurrences), and
”white” (5137 occurrences), as well as category-specific
terms like ”realistic” (6820 occurrences) and ”logo” (5789
occurrences). Through an examination of these frequently
occurring words, we were able to define 11 categories,
see Table 1. For each category, we then selected a keyword
that epitomizes the category. These keywords were sub-
sequently used to ascertain the group to which a prompt
belongs.

2.3 Inferring Human Preferences
In Section 3 of the main paper, several generated image
metrics are reviewed that are based on fine-tuning to in-
crease alignment with human preferences (e.g. ImageRe-
ward, Human Preference Score v2, and Aesthetic Predic-
tor). In this experiment, we aim to infer image quality
scores, enabling us to investigate the differences between
such metrics. As a baseline, we include metrics learned via
representation learning, e.g., CLIPScore, BLIP, and BLIP2.
In this experiment, we applied the six metrics to all text-
image pairs collected in Section 2.1 enabling us to rank

Category Top Words

realistic ”realistic” (6820), ”real” (674)
logo ”logo” (5789)
photo ”lighting” (5056), ”photography” (1940),

”photo” (1778), ”photorealistic” (1248), ”reflections” (1137)
Art ”art” (2312)
cartoon ”cartoon” (2064)
anime ”anime” (1699), ”manga” (185)
cyberpunk ”cyberpunk” (1207), ”futuristic” (1061), ”cyber” (182)
portrait ”portrait” (1135), ”eyes” (2178)
simple ”simple” (1065), ”minimalist” (795)
illustration ”illustration” (995), ”painting” (970)
landscape ”landscape” (593), ”mountains” (389), ”sunset” (673)

TABLE 1
Categories and Top Words occurred in different prompts

pairs for each metric separately. However, since these scores
use different scales for their values; for instance, CLIPScore
returns values around 2.5, while the aesthetic score ranges
between 0 and 10, comparing the scores is not straightfor-
ward. Therefore, we normalized all scores so that all values
lie between 0 and 1. In Figure 2, we show box plots of the
distribution of each image quality score. It is notable that
BLIP mostly contains very high scores, with a median above
0.9 and a very low standard deviation, whereas the other
scores demonstrate a more balanced distribution.

Fig. 2. Box plot visualization of the value ranges for each of the normal-
ized image quality scores.

After taking a closer look at the value ranges for different
scores, this section investigates the visual appearance of
images ranked by the scores, respectively. Therefore, we
attempted to identify the best and worst scored image for
each category and quality metric. First, we investigate an
overall quality by combining the six metrics, Figure 3 dis-
plays the images for each category based on the sum of the
six image quality scores. As observed across all categories,
the best image exhibits superior characteristics, featuring
clear and identifiable features, whether they be animals,
humans, or other depicted elements. In contrast, the worst
image within each category tends to be harder to recognize,
often resulting in unclear visual content or even areas of
a single color. This comparison provides valuable insights
into the varying quality levels across different categories,
highlighting the effectiveness of the selected quality metrics
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anime art cartoon cyberpunk illustration landscape

logo photo portrait realistic simple

Fig. 3. For each prompt category, we display the corresponding image
with the highest (top row) and lowest (bottom row) sum of six image
quality scores

in assessing and distinguishing image quality.
To gain more detailed insights, we also examined the

highest and lowest-rated images for each individual image
quality score. When reviewing the images, as shown in
Figure 4, a noticeable difference between the worst and best
images is evident, although the contrast is not as strong as
it is when considering the sum of all scores, as we did in
Figure 3. In some images, the depicted scenes can still be
easily identified, which may not always be possible with the
lowest-rated images when considering the sum of all scores.
Another observation is that CLIP, BLIP, and BLIP2 tend to
value a match between the prompt and the image more than
the actual aesthetics of the image. The lowest-rated score for
an image of these metrics does not correlate with poor visual
quality. It seems to receive a lower rating because it doesn’t
match well with the given prompt. This observation leads
to the conclusion that representation learning-based image
metrics do not reflect human preferences well.

2.4 Influence of Prompt Length

In this experiment, we delve into the correlation between
the length of prompts and their evaluation performance
across various categories. By analyzing the prompts asso-
ciated with both the lowest-rated and highest-rated im-
ages in each category, as detailed in Table 2, a clear trend
emerges: prompts for the lowest-rated images tend to be
significantly longer than those for the highest-rated images.
This observation suggests that prompt length may inversely
affect image evaluation outcomes, potentially due to factors
such as clarity, focus, and user engagement. Further analysis
reveals patterns in the compositional elements and the-
matic content of the highest-rated prompts, indicating that
optimal prompt length might also depend on the specific
context and requirements of each category. Furthermore, we
observe additional keywords that remained present after
our initial filtering out of command parameters specific
to Midjourney. We assume that these characteristics of the
prompts introduce a negative bias, resulting in poor text-

image alignment assessment by the adopted metrics. This
issue should be investigated in future research.

To investigate the potential correlation between prompt
length and the combined image quality score, we conducted
a detailed examination of the prompts. It was observed
that the maximum prompt length is 1800 characters, likely
a limitation imposed by MidJourney at the time. Figure 5
illustrates the impact of prompt length on the combined
image quality score. It was found that prompts shorter
than 200 characters tend to achieve the highest scores, and
as prompt length increases, the scores generally decline.
However, the correlation between prompt length and image
quality scores is not particularly strong, with a coefficient of
approximately -0.07. Despite this, the median score remains
consistently close to four across all lengths of prompts.
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Best Image Prompt Worst Image Worst Image Prompt

A nendroid style priest with a long grey beard and a cross around 
his neck in black round priest's hat in high white sneakers and 
black sunglasses disassembling boxes of shoes in the warehouse. 
3D, Logo, Nendroid style

The Terrible Vampire Monster in the Peach Blossom Forest

crypto trading hacker goon behind desk in analley trashcan cats 
silhoutte of man with knife in his mouth money on the floor 
beggar with raised hands poor homeless gold wide shot stock 
trading bitcoin ethereum hopium gains diamond hands help cry 
panic thunder loss crash stock crash bear

humanization of the city of Saratov Russia as Russian bakery girl, 
bright portrait, russian village atmosphere, high realistic, 35mm, 
by Norman Rockwell

Logo with inscription \"HIGH QUEENS\" minimalist pink street 
urban

patterndesigns:: blocky::1

captain of the ship guided by the stars in the ocean logo

collection of six variations of a simplistic funko anime-style cartoon 
character, resembling Digimon Agumon to full height. Each rendition 
exhibits distinct variations in attributes, hues and temperament, gradient 
shading, uncomplicated sketches, well-defined outlines, and octane 
rendering. Arranged in a 3 and 3 formation. Ultra-high resolution quality at 
8K UHD. The parameters used for color, saturation

area chats showing a crypto fund's great performance over the last 
year

Cybernetic samurai with katana blades looking down on Tokyo 
from atop a skyscraper on a cloudy night. vaporwave, neon 
lighting, ultra-detailed, realistic, science fiction, Adobe 
photoshop, high-tech, metallic, award-winning, futuristic sci-fi, 
imaginative futuristic, abstract::-2, style:: 3, high-quality

connor mcgregor eating a purple ice-cream in the rain

Cybernetic samurai with katana blades looking down on Tokyo 
from atop a skyscraper on a cloudy night. vaporwave, neon 
lighting, ultra-detailed, realistic, science fiction, Adobe 
photoshop, high-tech, metallic, award-winning, futuristic sci-fi, 
imaginative futuristic, abstract::-2, style:: 3, high-quality

Fig. 4. For each image quality score, we display the corresponding image and image prompt with the highest (left) and lowest scores (right).
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Category Best prompt Worst prompt

realistic fat boy, on bicycle, cloud, pink dress, big
arms, realistic style

Large Luxury Single Family neighborhood with mansions + aerial drone photo + Very Detailed + Very Realistic + Ultra High Definition website
design, UI/UX, unreal engine, detailed, ultra high definition, 2k

logo a man with top hat and smoking suit
with a white tiger at his left side and an
ethereum logo fluctuating over his right
hand in a futurist cyberpunk city

a vector logo for a software company, infrastructures, roads, highway, vector graphics, logotype

photo Goddess in gold and white ivory armor
ornate with golden wings on the helmet
levitating above the ground, full-body
portrait + photo-realistic renders. ultra-
detailed , 8k , dramatic epic lightning,
realistic texture

Please design a cover image for my upcoming video on ”Simple and Free Cash Flow Spreadsheet for Businesses”. The image should feature
a computer or mobile screen with the spreadsheet open, displaying the main financial data of a company. There should be a button for free
download of the spreadsheet in Excel or Google Sheets in the upper right corner of the screen. At the bottom of the screen, there should be a
list of the main features of the spreadsheet, such as ”Daily control of inflows and outflows”, ”Cash movement tracking”, ”Expense control”, and
”Compatibility with mobile and desktop”. The title of the video should be highlighted at the top of the screen, with the following call-to-action
phrase below: ”Take control of your finances with the simple and free cash flow spreadsheet for businesses”. The background image can be a
photo of a desk or a financial chart to emphasize the business aspect of the spreadsheet. Please use green and blue as the main colors to convey
trust and serenity. Thank you!

Art character art, blonde man, long blonde
hair in a bun, average build, glasses,
purple floral button up shirt, highly de-
tailed, Pixar art style,

giant octopus 3D sculpture, in the style of cloisonn0̆0e9 plique-0̆0e0-jour, enamel, translucent amber and teal color art glass, soft dim light glows
from inside octopus sculpture, intricate :: center :: full body :: wide shot :: 45 degree angle :: dark background :: solid black background

cartoon create a realistic 3d cartoon image of a
happy pug with wings and a halo of
angel in paradise

a cartoon character about money management, cute, blue

anime A cat black and white, with orange
parka, and a gray cap, with a chain with
the bitcoin logo, anime cover

Tags, The explosion of cucumber and jasmine in the iced coffee turned into Hami melon, Dreamy mountains in the style of kawase hasui,
Highlight the coffee jasmine cucumber, Peter Mohrbacher, James Jean, Simon Stalenhag, and CloverWorks’ style, Japanese urban pop style,
Japanese 1980 vintage anime noise, super detail, written on Japanese paper, dynamic angles, high feeling illustrations, masterpiece, 16K, Ultra
HD, best quality, perfect surreal composition, decals, explode coffee bean

cyberpunk purple bear with neon cyberpunk lines
in the face roaring, dressed with a
hoodie

electric train, light snow, traffic lights, train station, cyberpunk city, Long shot, hyper realistic, 4K, 8k, HD, cinematic, cinematic composition::
Nikon D750::15 Halogen::250

portrait realistic portrait of a white goat with
scientific glasses and a crown of yellow
flowers on his head

stero equipment robot, unreal engine 5, Real photography, movement, realism, detailed texture, Cinematic, Color Grading, portrait Photography,
Shot on 50mm lense, Ultra-Wide Angle, Depth of Field, hyper-detailed, beautifully color-coded, insane details, intricate details, beautifully color
graded, Cinematic, Color Grading, Editorial Photography, Photography, Photoshoot, Shot on 70mm lense, Depth of Field, DOF, Tilt Blur, Shutter
Speed 1/1000, F/22, White Balance, 32k, Super-Resolution, Megapixel, ProPhoto RGB, , Good, Massive, Halfrear Lighting, Backlight, Natural
Lighting, Incandescent, Optical Fiber, Moody Lighting, Cinematic Lighting, Studio Lighting, Soft Lighting, Volumetric, Contre-Jour, Beautiful
Lighting, Accent Lighting, Global Illumination, Screen Space Global Illumination, Ray Tracing Global Illumination, Optics, Scattering, Glowing,
Shadows, Rough, Shimmering, Ray Tracing Reflections, Lumen Reflections, Screen Space Reflections, Diffraction Grading, Chromatic Aberration,
GB Displacement, Scan Lines, Ray Traced, Ray Tracing Ambient Occlusion, Anti-Aliasing, FXAA, TXAA, RTX, SSAO, Shaders, OpenGL-Shaders,
GLSL-Shaders, Post Processing, Post-Production, Cel Shading, Tone Mapping, insanely detailed and intricate, hypermaximalist, elegant, realistic,
super detailed, dynamic pose, photograph

simple wizard in simple blue and white clothes
with gray hair and a beard picking an
apple from a tree

Simplicity: A hospital logo should be simple and easily recognizable. This is especially important since hospitals deal with patients who may
be in distress and not be able to focus on complex designs. Color scheme: Choose a color scheme that is calming, soothing, and associated
with health and wellness, such as blue, green, or white. Avoid using bright, bold colors that may be overwhelming. Fonts: Use clear and easily
readable fonts, preferably sans-serif fonts, that are legible even from a distance. Images: Incorporate images that are relevant to the hospital’s
specialty or mission, such as a caduceus for medical institutions, or a heart for cardiac centers. Originality: Avoid copying other hospital logos,
and strive to create a unique design that stands out and represents the hospital’s values. With these considerations in mind, here are a few
hospital logo design ideas: A stylized caduceus with a simple font in blue or green. An abstract symbol that represents the hospital’s specialty,
such as a stylized heart for a cardiac center. A logo that incorporates a hospital building with a calming color scheme. A logo that uses a simple,
clean, and modern font with a small, stylized icon or symbol in the corner. A logo that incorporates a symbol of hope and healing, such as a
dove or a lotus flower, in a calming color palette

illustration Lisa Frank illustration of a bear smok-
ing marijuana through a bong while sit-
ting next to a rainbow river

The logo could feature the words B̈astos Chroniclesı̈n bold, playful font. The word B̈astosc̈ould be in a different color or font to emphasize its
ironic contrast with the page’s wholesome content. The letter Öı̈n C̈hroniclesc̈ould be replaced with a simple illustration of a book or a scroll to
represent storytelling. The color scheme could be bright and cheerful, such as blue and orange, to convey a sense of fun and joy.

landscape An old man on top of his motorcycle,
tattoos, big beard and bald, in his look a
long road with a beautiful landscape in
the background, the sun setting and the
sea in the distance

ableton live :: berlin, night time, year 2030, sci-fi, cupertino, flying cars, night sky filled with stars, high res, 4K definition, Night, Cold
Colors, Color Grading, Shot on 35mm wide angle lense, Ultra-Wide Angle, Depth of Field, hyper-detailed, beautifully color-coded, insane
details, intricate details, beautifully color graded, Unreal Engine 5, Cinematic, Color Grading, Editorial Photography, Photography, Photoshoot,
Landscape Shot, Depth of Field, DOF, Tilt Blur, Shutter Speed 1/1000, F/22, White Balance, 32k, Super-Resolution, Megapixel, ProPhoto RGB, VR,
Lonely, Good, Massive, Halfrear Lighting, Backlight, Natural Lighting, Incandescent, Optical Fiber, Moody Lighting, Cinematic Lighting, Studio
Lighting, Soft Lighting, Volumetric, Contre-Jour, Beautiful Lighting, Accent Lighting, Global Illumination, Screen Space Global Illumination,
Ray Tracing Global Illumination, Optics, Scattering, Glowing, Shadows, Rough, Shimmering, Ray Tracing Reflections, Lumen Reflections, Screen
Space Reflections, Diffraction Grading, Chromatic Aberration, GB Displacement, Scan Lines, Ray Traced, Ray Tracing Ambient Occlusion, Anti-
Aliasing, FKAA, TXAA, RTX, SSAO, Shaders, OpenGL-Shaders, GLSL-Shaders, Post Processing, Post-Production, Cel Shading, Tone Mapping,
CGI, VFX, SFX, insanely detailed and intricate, super detailed

TABLE 2
This table shows the prompts of the worst and best image for each category
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Fig. 5. This Figure shows the correlation between prompt length and the
combined image quality score. For better readability we split the data
based on the prompt length into nine chunks and created a boxplot for
each chunk

2.5 Metric Correlation Analysis

To investigate the correlation among the six metrics, we
applied a dimension reduction technique to the computed
score vectors. This approach allows us to explore how scores
vary across different categories and whether the scores of
prompts within a category are similar. To this end, we re-
duced the six dimensions to two using t-SNE (t-distributed
Stochastic Neighbor Embedding). This reduction aims to vi-
sualize high-dimensional data in a two-dimensional space,
facilitating the creation of a cluster plot. By reducing the
dimensionality, we hope to uncover hidden patterns and
structures not immediately apparent in its original, more
complex form. t-SNE excels at maintaining similarities be-
tween nearby points, making it ideal for exploring data
and identifying groups of similar points. In Figure 6, we
present the distribution of data points across the four largest
categories: realistic, logo, photo, and art. The plots reveal
that some categories, like ’realistic,’ ’photo,’ and ’art,’ are
more dispersed, forming several clusters across the space,
while others, such as ’logo,’ are more concentrated in spe-
cific areas. Additionally, we observe clusters representing
combinations of the categories realistic, photo, and art,
indicating that the prompts contain keywords from each
category.

To take a closer look at these observations, we created a
cluster plot shown in Figure 7 containing all four categories.
The combination of categories is represented by the mixture
of the categories’ specific colors. The color yellow represents
the combination of the category photo (with the color green)
and realistic (with the color red). The results indicate that
there are indeed clusters representing a category or even
sub-categories, such as the orange cluster representing the
combination of realistic, photo, and art, or the blue cluster
representing the category logo. This suggests that the image
quality metrics generally yield similar results for images
within the same category.
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Fig. 6. These cluster plots illustrate the distribution of projected scores across four different categories. Points belonging to each category are
highlighted in red, while those not belonging to any category are displayed in gray. Due to computational limitations, we considered only 10, 000
prompts for this analysis.

Fig. 7. This cluster plot illustrates the distribution of projected scores
across four different categories. Each category is represented by a
specific color: ’realistic’ in red, ’logo’ in blue, ’photo’ in green, and ’art’ in
purple. The colors for combinations of these categories result from the
blending of their respective colors.
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