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A B S T R A C T

Background: Self-supervised pre-training of deep learning models with contrastive learning is a widely used
technique in image analysis. Current findings indicate a strong potential for contrastive pre-training on medical
images. However, further research is necessary to incorporate the particular characteristics of these images.
Method: We hypothesize that the similarity of medical images hinders the success of contrastive learning in the
medical imaging domain. To this end, we investigate different strategies based on deep embedding, information
theory, and hashing in order to identify and reduce redundancy in medical pre-training datasets. The effect
of these different reduction strategies on contrastive learning is evaluated on two pre-training datasets and
several downstream classification tasks.
Results: In all of our experiments, dataset reduction leads to a considerable performance gain in downstream
tasks, e.g., an AUC score improvement from 0.78 to 0.83 for the COVID CT Classification Grand Challenge, 0.97
to 0.98 for the OrganSMNIST Classification Challenge and 0.73 to 0.83 for a brain hemorrhage classification
task. Furthermore, pre-training is up to nine times faster due to the dataset reduction.
Conclusions: In conclusion, the proposed approach highlights the importance of dataset quality and provides
a transferable approach to improve contrastive pre-training for classification downstream tasks on medical
images.
1. Introduction

Supervised training of a deep learning model requires large and
accurate datasets. Annotations are necessary for all training samples.
In the medical imaging domain, annotated datasets for specific tasks
are often limited due to factors such as the rarity of diseases, limited
access, or the high complexity of annotations [1,2]. To overcome this
challenge, deep learning models can be pre-trained on large medical
image datasets without annotations, using self-supervised learning tech-
niques [3]. These techniques train the models to create meaningful
representations from unlabeled datasets, allowing them to learn general
high-level features of the images. To fine-tune the models for specific
tasks, the so-called ‘‘downstream tasks’’, small annotated datasets are
sufficient after pre-training. Contrastive learning is a state-of-the-art
approach for self-supervised pre-training on unannotated images [4]
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and according to Huang et al.’s study [3], currently the most popular
approach in the medical imaging domain. Several works show remark-
able performance gains on medical downstream tasks when the models
are pre-trained with contrastive learning on large unannotated medical
image datasets compared to training the models from scratch [5–10].
Despite the great potential of contrastive pre-training techniques in the
medical domain, the special characteristics of volumetric radiological
images, consisting of many consecutive slices, such as CT, MRI or PET,
have not been sufficiently exploited. In our work, we evaluate the
composition of the pre-training datasets for contrastive learning on CT
scans.

When it comes to deep learning on CT scans in general, there are
two widely used approaches, both of which show excellent results on
clinically relevant imaging tasks. The first approach is to train on the
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Fig. 1. This figure gives an overview of our approach to investigate the hypothesis that using all CT slices for contrastive pre-training may lead to performance degradation due
to the high similarity of the slices. The first step is to pre-train a deep learning model. Therefore, we start with a dataset of unannotated CT slices, select slices in such a way that
we obtain a reduced dataset with increased variation, and pre-train the model with contrastive learning on the reduced dataset. The second step is to evaluate the pre-training on
downstream tasks. Therefore, the pre-trained model is fine-tuned with supervised learning on small datasets with annotations for the specific task. Our work compares different
strategies to reduce CT image pre-training datasets.
whole CT volumes using a 3D model [11,12], and the second approach
is to train on individual slices of the volumes using a 2D model [13–
16]. Each approach has its own advantages. While training a 3D model
on volumes enables the model to better capture the 3D properties
of the images [17], training a 2D model by using each slice of a
volume separately can improve performance on small datasets due to
the increased sample size [18–20], and reduces the computational cost
of training and inference as smaller GPUs are sufficient [17–19,21,22].
For both approaches, there are several publications that investigate
self-supervised pre-training with contrastive learning, achieving signif-
icant performance gains on several CT image downstream tasks. Tang
et al. [6] and Dufumier et al. [10] pre-train 3D models on CT volumes,
while Wolf et al. [23], Ghesu et al. [5] and Chen et al. [7] pre-train 2D
models on CT slices. In this study, we chose to conduct our experiments
with 2D models because we see that it is critical for deep learning
to be globally accessible without the need for powerful GPUs, and
the advantages of 2D models for sparse data remain significant even
when using pre-trained models, as small annotated datasets are a major
challenge in the field of medical imaging.

Contrastive learning involves the following steps: A dataset of un-
labeled images is used as a starting point. Random augmentations are
applied to generate multiple randomly varied samples of each original
image. These are fed into a deep learning model to obtain latent-
space representations for each sample. The model always compares two
representations and is trained to discriminate whether these are derived
from the same original image (referred to as positive pairs) or derived
from different original images (referred to as negative pairs). Previous
works on contrastive pre-training with CT slices have included as many
slices as possible, following the traditional approach of maximizing the
pre-training dataset [5,7,23]. In this paper, we hypothesize that using
all slices of each CT volume in a dataset for contrastive pre-training
may lead to performance degradation. We derive our hypothesis from
the fact that CT datasets have very low variance compared to natural
image datasets due to the high similarity of the CT slices. This may
result in the model being unable to discriminate between positive and
negative pairs since the similarity between two augmented versions of
a slice might be lower than the similarity between two different slices.
Our hypothesis is supported by recent work that provides preliminary
evidence that this may be a challenge in contrastive learning. Using
ImageNet data, Jing et al. [24] show that a lower variance of the
data distribution than the variance caused by the data augmentation of
contrastive learning leads to performance degradation in downstream
tasks. Conrad and Narayan [25] show on electron microscopy images
2 
that low variance in the pre-training dataset affects downstream task
results.

To investigate our hypothesis that using all CT slices for contrastive
pre-training may lead to performance degradation, we explore various
strategies based on deep embedding, information theory, and hashing
to identify and reduce redundancy in pre-training datasets. Fig. 1
illustrates our general approach. Starting with a dataset of unanno-
tated CT slices, we perform different reduction strategies and pre-train
the models with contrastive learning on the reduced datasets. The
pre-trainings are evaluated on downstream tasks by fine-tuning the pre-
trained models with supervised learning. We choose two pre-training
datasets and three downstream classification tasks, the benchmark task
for evaluating self-supervised pre-training [3]. The outcomes support
our hypothesis, as the downstream results improve with our dataset
reduction strategies. Furthermore, we investigate which reduction strat-
egy is best suited for CT datasets and what is the optimal threshold
that represents the best trade-off between high variation but also a
sufficiently large number of samples in the pre-training dataset to
achieve the best downstream results. Finally, our work provides a
ready-to-use model for improving self-supervised pre-training on CT
datasets for classification downstream tasks. These findings have the
potential to improve the handling of small annotated CT datasets while
maintaining low computational costs. The pre-trained models, as well
as the ready-to-use code, are available on GitHub: https://github.com/
Wolfda95/Less_is_More

2. Materials and methods

In this section, we explain in detail the methods for investigating our
hypothesis that using all slices of each CT volume for contrastive pre-
training may lead to performance degradation due to the high similarity
of the slices. We first present strategies for selecting slices of CT vol-
umes to obtain a reduced pre-training dataset with increased variation.
This is followed by describing the contrastive pre-training methods and
datasets. Finally, we introduce the downstream tasks to evaluate the
impact of the reduction strategies on contrastive pre-training.

2.1. Dataset reduction

We investigate our hypothesis by comparing six approaches for
slice selection: two baseline approaches and four similarity-based ap-
proaches. The similarity-based approaches perform a pairwise compar-
ison between all slices in a volume. A similarity score is calculated
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for each slice pair. The pairs are sorted from most similar to most
dissimilar. Starting from the most similar pair, one slice is removed
from the pairs until either all pairs have similarities below a given
threshold or until a given number of slices is left. We incorporate
commonly used similarity computation methods from different fields,
such as information theory, deep embedding, and hashing, without
claiming completeness. The methods we selected are well-established
for image comparison and computationally fast, which is necessary due
to the large number of pairwise comparisons.

ALL: The first baseline approach follows the current state of the
art [5,7]. All slices are included in the training.

EveryN: The second baseline approach is our baseline reduction
method. Here, CT datasets are reduced by using every 𝑛th slice of a
volume.

SSIM: As our first similarity-based approach, we use the Structural
Similarity Index (SSIM) [26] from information theory, which is a com-
mon similarity measure for images [27]. It compares the luminance,
contrast, and structure of two given images 𝐱 and 𝐲 by the equation

d(𝐱, 𝐲) =
(2𝜇x𝜇𝑦 + (𝐾1𝐿)2)(2𝜎𝑥𝑦 + (𝐾2𝐿)2)

(

𝜇2
𝑥 + 𝜇2

𝑦 + (𝐾1𝐿)2
)(

𝜎2𝑥 + 𝜎2𝑦 + (𝐾2𝐿)2
) , (1)

where 𝜇𝑥, 𝜇𝑦 and 𝜎𝑥, 𝜎𝑥 are the mean and standard deviation and 𝜎𝑥𝑦
the covariance of all pixel values of two images. To avoid instability,
(𝐾1𝐿)2 and (𝐾2𝐿)2 are added, where 𝐿 is the dynamic range of the
pixel values and 𝐾1 = 0.01 and 𝐾2 = 0.03 are small constants. SSIM
is computed as the average result of a moving 11 × 11 kernel with a
Gaussian weighting function. The parameters were chosen as suggested
by Wang et al. [26].

MI: We use Mutual Information (MI) as the second similarity-based
approach from information theory. MI is a widely used technique for
similarity calculation and registration of medical images [28,29] and
measures the dependence between two images 𝐱 and 𝐲 by calculating
the Kullback–Leibler divergence

KL(𝐗 ∥ 𝐘) =
∑

𝑥∈𝐗

∑

𝑦∈𝐘
𝑝(𝑥, 𝑦) log

(

𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

)

, (2)

between the joint distribution 𝑝(𝑥, 𝑦) and the independent distributions
𝑝(𝑥)𝑝(𝑦) of the pixel values. We use the normalized Mutual Information
as introduced by Studholme et al. [30].

DeepNet: Motivated by the success of the Perceptual Similarity
Metric [31] for image comparison, which is computationally expensive,
we introduce DeepNet similarity, which reduces the complexity so
that pairwise comparisons can be performed in a reasonable amount
of time. Like perceptual similarity, DeepNet similarity compares two
images by running them through a pre-trained deep learning model.
Instead of computing the cosine similarity in the channel dimension,
DeepNet similarity computes the cosine similarity between the output
vectors. Using PyTorch’s ResNet50 [32] pre-trained on ImageNet [33]
to compute the output vectors, we get the following equation

d(𝐱, 𝐲) = ResNet(𝐱) ⋅ ResNet(𝐲)
‖ResNet(𝐱)‖2 ‖ResNet(𝐲)‖2

, (3)

to compare two images 𝐱 and 𝐲.
HASH: The HASH similarity is based on the comparison of hash

values derived from each image. It is motivated by Conrad and Narayan
[25], who used it to extract dissimilar images from an electron mi-
croscopy dataset for contrastive pre-training. The procedure is as fol-
lows: Each image is compressed to the size of 9 × 8 pixel and encoded
into a 64-bit hash. The compression is performed with the Antialias
function from Pillow [34]. The hash is computed by looping through
each row of the compressed image, comparing each pixel with its right
neighbor, and selecting one if the neighbor is larger and zero if the
neighbor is smaller. For each row of nine pixels, this results in a hash
of eight bits, leading to a 64-bit hash in total. The Hamming distance

d(𝐱, 𝐲) = 1
𝑛
∑

|Hash(𝐱)𝑖 − Hash(𝐲)𝑖|, (4)

𝑛 𝑖=1

3 
Fig. 2. This figure explains the similarity calculation between two images using the
HASH method. First, the images are compressed to the size of 9 × 8. In the second
step, a 64-bit hash is computed by looping through each row of the compressed images,
comparing each pixel with its right neighbor, and choosing one if the neighbor is larger
and zero if the neighbor is smaller. To calculate the similarity, the hashes for the two
images are compared with the Hamming distance, which is the sum of the different
bits.

between the two hashes of images x and y measures the similarity,
where 𝑛 = 64 is the length of the hash. All parameters are chosen
following Conrad and Narayan [25]. Fig. 2 illustrates the similarity
calculation between two images with the HASH method.

2.2. Pre-training

Following Huang et al.’s. [3] study, popular contrastive learning
methods from natural image processing that are widely utilized for
medical pre-training are SimCLR [35], MoCo [36], BYOL [37], and
SwAV [38]. SimCLR follows the basic contrastive learning strategy,
where the model is trained to distinguish between positive and negative
pairs within a mini-batch. This requires a large batch size in order to
obtain a sufficient number of negative samples within one mini-batch.
MoCo adds a queue for storing negative samples, which reduces batch
size requirements but increases storage demands. BYOL introduces two
competing models to decrease batch size demands. SwAV adds online
feature clustering to the latent space representations, which lowers the
batch-size constraints.

For our evaluations, we chose the method SwAV [38], since it out-
performed the other state-of-the-art contrastive learning methods with
convolutional models on several natural imaging benchmark tasks [39],
is more computational efficient [38], and was already successfully
applied for pre-training on CT slices [5,23]. Due to the identical basic
concept of all methods, our findings are expected to be generalizable
to other contrastive pre-training methods. A detailed explanation of the
SwAV pre-training method can be found in Appendix A. In order to
create positive pairs of one original image, SwAV uses the transforms
color jitter, Gaussian blur, and a multi-crop strategy, where two trans-
formed images are obtained by cropping a part of the original image
with a larger crop size, and several additional samples are cropped with
a smaller crop size. For our evaluations, we use exactly the transform
settings of the original paper, as they have been shown to be the
most appropriate for this pre-training method. Details can be found
in Appendix A.

The pre-training is performed on the CT slices of two publicly
available image datasets, summarized in Table 1:
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Table 1
Pre-training datasets.

PET-CT LIDC

Modality CT CT
Body part Whole body Lung
Volumes 900 1010
Slices 541,439 244,527
Availability Public Public

Table 2
Downstream tasks to evaluate the pre-trainings.

COVID-19 OrgMNIST Brain

Modality CT CT CT
Body part Lung Abdomen Brain
Classification Binary Multi-class Binary
Slices 746 25,221 200
Availability Public Public Internal

PET-CT: The FDG-PET-CT [40,41] dataset, which was part of the
MICCAI 2022 AutoPET challenge [42], consists of whole-body PET/CT
scans of 900 patients, from which we extract 541,439 CT slices.

LIDC: The Lung Image Database Consortium Image Collection
(LIDC-IDRI) [43,44] dataset consists of lung CT volumes of 1010 pa-
tients acquired from seven academic centers, initiated by the National
Cancer Institute (NCI). We extracted 244,527 CT slices of the dataset.

We used only the CT slices of the datasets; all other information
or labels were excluded. The pre-training is performed separately on
the two datasets for better generalizability of findings. Implementations
are done in PyTorch Lightning [45]. We choose a ResNet50 [32] as
our model due to its popularity in medical image analysis [46] and its
widespread use as a baseline for comparisons in vision studies [47]. We
pre-train the model for 800 epochs on an Nvidia GeForce RTX 3090
GPU and perform a downstream task evaluation every 50 epoch to
find the best-performing epoch. All pre-training hyperparameters can
be found in Appendix A.

2.3. Downstream evaluation

As Huang et al. [3] shows, classification tasks are commonly used as
a benchmark for evaluating self-supervised pre-training. Usually, only
a single linear layer is added to the pre-trained encoder to adjust the
model to the correct output size, resulting in only the weights of one
layer not being pre-trained. In contrast, segmentation tasks require the
addition of a large decoder to the pre-trained encoder, such as in a
U-Net [48], resulting in a more significant proportion of untrained
model weights. This increases the dependency on the dataset of the
downstream task. Therefore, we focus on classification downstream
tasks to evaluate pre-training performance, although our results are
expected to apply to other tasks as well.

We selected three classification tasks on CT slices, ensuring that
the images do not overlap with those in the pre-training datasets.
These tasks include two public challenges and an internal task as
part of a clinical study. For the two publicly available challenges, we
perform five downstream runs with the given train/validation/test split
of the challenge, to ensure the comparability with other challenge
participants. For the internal task, a five-fold stratified cross-validation
is performed. For each fold, four parts of the data are used for training
and validation (90% training, 10% validation), and the remaining
part that has not been used for training and validation is used for
testing. This ensures, that the model works on different data splits.
The mean and standard deviation of accuracy, AUC score, and F1-sore
over the five runs are reported for all three tasks. The tasks include CT
scans from different hospitals, scanners, and body parts to prove the
generalizability of our findings. The three tasks, summarized in Table 2,
are the following:
4 
Fig. 3. Example slices of the COVID-19 classification downstream task from Grand
Challenge [49]. Upper Row: COVID-19 findings; Lower Row: No COVID-19 findings.

Fig. 4. Example patches for the OrgMNIST multi-class classification downstream task
of the OrganSMNIST Challenges [50].

COVID-19: The COVID-19 CT Classification Grand Challenge [49]
dataset consists of 349 CT slices (216 patients) and 397 CT slices (171
patients) with and without clinical findings of COVID-19, respectively.
The task is to classify between COVID-19 findings and no COVID-19
findings. Fig. 3 shows an example slice for both classes.

OrgMNIST: The OrganSMNIST Challenge from MedMNIST [50]
consists of 25,221 image patches of the size 28 × 28, cropped around
organs from abdominal CT scans of 201 patients. The challenge is a
multi-class classification of 11 body organs. Fig. 4 shows some example
images of cropped patches.

Brain: An internal dataset with CT slices from 100 patients with
and 100 patients without brain hemorrhage is used for the third down-
stream task. All CT examinations were part of the routine clinical
practice at the University Hospital of Ulm. Representative slices were
selected by Dr. Ch. G. Lisson and Dr. Ca. S. Lisson, two well-trained
senior radiologists. This study aims to determine whether brain hem-
orrhages can be detected automatically on CT scans, which could help
physicians in their diagnosis. All patients provided written consent for
the use of their anonymized data for research purposes upon signing
the treatment contract between the University Hospital of Ulm and the
patient. Ethical approval was given by the Ethics Committee of Ulm
University under ID 302/17. More details about the collected slices
can be found in Appendix D. The task is to classify between brain
hemorrhage and no brain hemorrhage, with pre-training being essential
due to the small dataset size. Fig. 5 shows some example images of
cropped patches.

Our implementations are done in PyTorch Lightning [45] with
MONAI [51]. We resize the slices of all tasks to 224 × 224 in a
preprocessing step and train on an Nvidia GeForce RTX 3090 GPU
using the Adam optimizer with learning rate 10−4 and batch-size 64.
We add one linear layer to the pre-trained encoder. Only the linear
layer is trained during the first ten epochs before the complete model
is fine-tuned.

3. Experiments and results

Our experiments are designed to investigate our hypothesis by an-
swering whether dataset reduction leads to performance gains, which of
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Table 3
This table shows the results of the three downstream tasks COVID-19, OrgMNIST, and Brain without using any pre-training. The weights of the
model are initialized with PyTorch’s standard random initialization (Accuracy can be found in Table E.12 in Appendix E).
Pre-training Downstream results

Dataset Method COVID-19 OrgMNIST Brain

AUC F1 AUC F1 AUC F1

– – 0.737 ± 0.033 0.679 ± 0.033 0.971 ± 0.001 0.755 ± 0.003 0.678 ± 0.037 0.447 ± 0.157
Table 4
Evaluation A: This table compares the baseline pre-training method ALL, the current state-of-the-art, which uses all slices of a CT dataset for contrastive pre-training, with the
baseline reduction pre-training method EveryN. Pre-training with SwAV is performed on the datasets PET-CT and LIDC with all slices, with 20% of the slices by using every fifth
slice, and with 10% of the slices, by using every tenth slice. The different pre-trainings are evaluated on the three downstream tasks COVID-19, OrgMNIST, and Brain (Accuracy
can be found in Table E.13 in Appendix E).

Pre-training Downstream results

Dataset Method COVID-19 OrgMNIST Brain

AUC F1 AUC F1 AUC F1

PET-CT ALL 0.775 ± 0.009 0.719 ± 0.010 0.968 ± 0.003 0.752 ± 0.003 0.727 ± 0.042 0.534 ± 0.073
EveryN 20% 0.801 ± 0.006 0.735 ± 0.009 0.972 ± 0.003 0.782 ± 0.003 0.781 ± 0.035 0.665 ± 0.070
EveryN 10% 0.810 ± 0.007 0.740 ± 0.016 0.973 ± 0.002 0.793 ± 0.002 0.798 ± 0.031 0.674 ± 0.074

LIDC ALL 0.807 ± 0.006 0.744 ± 0.013 0.972 ± 0.003 0.769 ± 0.003 0.734 ± 0.046 0.609 ± 0.072
EveryN 20% 0.810 ± 0.004 0.751 ± 0.010 0.977 ± 0.005 0.792 ± 0.003 0.739 ± 0.044 0.610 ± 0.046
EveryN 10% 0.812 ± 0.006 0.756 ± 0.010 0.979 ± 0.002 0.800 ± 0.003 0.740 ± 0.041 0.614 ± 0.046
Fig. 5. Example slices of the internal Brain classification downstream task. Upper Row:
With brain hemorrhage; Lower Row: Without brain hemorrhage.

our selected reduction methods performs best, what is the optimal sim-
ilarity threshold, and how much performance gain can be achieved. All
experiments are performed separately on the two pre-training datasets
PET-CT and LIDC. In total, we conducted 24 different pre-trainings,
resulting in over 2000 pre-training hours. The pre-trainings are eval-
uated on the three downstream tasks COVID-19, OrgMNIST, and Brain.
For all results, we report the mean and standard deviation of AUC
and F1 scores over five fine-tuning runs on the downstream tasks.
Table 3 shows the downstream task results without any pre-training
as a reference.

3.1. Evaluation A: Does reduction lead to performance gains?

The first experiment evaluates whether reducing CT datasets for
contrastive pre-training leads to performance gains in downstream
tasks. To answer this question, we compare the baseline method ALL
with the baseline reduction method EveryN. Pre-training is performed
on both pre-training datasets with all slices (ALL), with every tenth
slice, and with every fifth slice (EveryN). The reduction numbers are
chosen randomly. Table 4 shows the downstream task results. Perfor-
mance gains are achieved in all three downstream tasks by reducing
the pre-training dataset to 20%, and 10% with the EveryN method. The
performance gains are slightly higher for the 10% reduction.
5 
3.2. Evaluation B: Which reduction method performs best?

Having found that CT data reduction for contrastive pre-training
leads to considerable performance gains in downstream tasks, the sec-
ond experiment investigates which of our selected reduction methods
is the best option. We compare the baseline reduction method EveryN
with the similarity-based approaches SSIM, MI, DeepNet, and HASH.
For an accurate comparison, the reduced datasets should contain the
same number of slices for each method. We chose to reduce the pre-
training datasets to 10%, since we found a considerable performance
gain for reducing the datasets to 10% with the baseline method. The
similarity-based approaches reduce the dataset by performing a pair-
wise comparison of all slices in a volume and removing one slice from
pairs with a high similarity, starting with the highest similarity until
only 10% of the volume is left. This results in ten pre-training datasets,
the reduced PET-CT and LIDC datasets with the approaches EveryN,
SSIM, MI, DeepNet, HASH.

Table 5 shows the downstream task results. The HASH method out-
performs the baseline reduction method EveryN and all other similarity
based approaches. We examined the remaining slices after reduction.
Fig. 6 shows the first five remaining slices for an example volume for
each of the two pre-training datasets PET-CT and LIDC. To examine
how alike the datasets are after the different reduction methods, we
compare each dataset with all other datasets and count how many of
the remaining slices are equal. The percentage of equal slices across
the reduction methods ranges from 9% to 30%, with SSIM and MI
having the highest equality and the equality between EveryN and
the other approaches being the lowest, between 9% and 11%. We
further evaluated the execution time for dataset reduction. The EveryN
approach has the shortest execution time with less than one minute,
followed by HASH with less than 30 min, both executed on an AMD
Ryzen 9 5900X. SSIM, MI, and DeepNet are computed on an Nvidia
GeForce RTX 3090 GPU with execution times of 421 h, 312 h, 6 h for
the PET-CT dataset and 53 h, 48 h, 2 h for the LIDC dataset.

3.3. Evaluation C: What is the optimal threshold?

When comparing five approaches for reducing CT datasets to 10%,
we found that the HASH approach performs best. However, the per-
centage of a CT dataset volume that leads to the best results can vary
from dataset to dataset, depending on the variation of the datasets.
Datasets with high variation, for example, due to higher slice thick-
ness, may require less reduction than datasets with lower variation.
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Table 5
Evaluation B: This table compares different methods for reducing the pre-training datasets to 10% of the slices. The first method is the baseline reduction method EveryN, which
reduces the pre-training dataset by using every tenth slice, followed by the similarity based methods, which perform a pairwise comparison of all slices in a CT volume and remove
one slice from pairs with high similarity (Accuracy can be found in Table E.14 in Appendix E).

Pre-Training Downstream results

Dataset Method COVID-19 OrgMNIST Brain

AUC F1 AUC F1 AUC F1

PET-CT EveryN 0.810 ± 0.007 0.740 ± 0.016 0.973 ± 0.002 0.793 ± 0.002 0.798 ± 0.031 0.674 ± 0.074
SSIM 0.811 ± 0.005 0.741 ± 0.010 0.974 ± 0.001 0.794 ± 0.002 0.801 ± 0.309 0.701 ± 0.309
MI 0.810 ± 0.006 0.748 ± 0.005 0.974 ± 0.001 0.794 ± 0.002 0.819 ± 0.020 0.720 ± 0.024
DeepNet 0.791 ± 0.008 0.734 ± 0.005 0.973 ± 0.002 0.795 ± 0.002 0.814 ± 0.020 0.721 ± 0.011
HASH 0.825 ± 0.004 0.755 ± 0.009 0.975 ± 0.001 0.800 ± 0.002 0.821 ± 0.009 0.725 ± 0.009

LIDC EveryN 0.812 ± 0.006 0.756 ± 0.010 0.979 ± 0.002 0.800 ± 0.003 0.740 ± 0.041 0.614 ± 0.046
SSIM 0.820 ± 0.005 0.751 ± 0.008 0.980 ± 0.001 0.799 ± 0.003 0.813 ± 0.031 0.740 ± 0.027
MI 0.820 ± 0.007 0.752 ± 0.010 0.980 ± 0.001 0.800 ± 0.002 0.803 ± 0.021 0.741 ± 0.025
DeepNet 0.800 ± 0.005 0.744 ± 0.011 0.978 ± 0.002 0.793 ± 0.002 0.817 ± 0.028 0.742 ± 0.064
HASH 0.825 ± 0.007 0.754 ± 0.013 0.981 ± 0.002 0.802 ± 0.002 0.829 ± 0.020 0.744 ± 0.021
Fig. 6. This figure compares the selected images for pre-training with the PET-CT dataset (a) and the LIDC dataset (b) after the reduction using the EveryN, SSIM, MI, DeepNet,
HASH methods. Five consecutive slices from an example volume are shown, starting from the first slice of the volume in the top row to the fifth remaining slice in the bottom
row.
Therefore, in the third experiment, we attempt to find the optimal
threshold for the degree of similarity between the slices that leads to
the highest results in downstream tasks. We use the best-performing
slice selection method HASH and test different similarity thresholds.
The similarity score for comparing two slices using the HASH approach
is the Hamming distance, which ranges from 0 (most similar) to 64
(most dissimilar). Reducing the dataset to a chosen similarity threshold
of the Hamming distance leads to a dataset where, within each volume,
no pairs of slices are more similar than the threshold. We compare
three thresholds: Hamming distances three, six, and twelve. Number
of slices: PET-CT: 120,750 (22.3%); 48,718 (9%); 19,497 (3.6%) and
LIDC: 44,416 (18.2%); 22,672 (9.3%); 9828 (4%). Table 6 compares
the downstream results of the different similarity thresholds. The best
performance on all three downstream tasks is achieved with threshold
hamming distance six. Higher and lower similarity thresholds, resulting
in larger and smaller remaining portions of the pre-training datasets,
lead to slightly degraded results.
6 
3.4. Evaluation D: How much performance gain can be achieved?

Through several experiments, we found that the HASH approach
with a Hamming distance threshold of six (HASH-6) performs best.
In the last step, we compare the downstream task results of the best-
performing approach with the baseline method ALL, the current state
of the art, using all slices of the dataset for pre-training. Fig. 7 shows
the pre-training duration and the AUC scores of the downstream task
results. On the PET-CT pre-training dataset, we achieve performance
gains in AUC values from 0.775 to 0.830, 0.968 to 0.978, and 0.727
to 0.831 for the COVID-19, OrgMNIST, and Brain downstream tasks,
respectively. Performance gains from 0.807 to 0.823, 0.972 to 0.982,
and 0.734 to 0.840 are achieved on the LIDC pre-training dataset. The
pre-training time is reduced from 538 h to 62 h and from 280 h to 27 h
on the PET-CT and LIDC datasets, respectively, with a slice selection
time of less than 30 min. For a better interpretation of our results, in
the following we further analyze the difference between pre-training
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Table 6
Evaluation C: This table compares different similarity thresholds of the best performing reduction method HASH, in order to obtain the optimal degree of similarity between the
slices for contrastive pre-training (Accuracy can be found in Table E.15 in Appendix E).

Pre-training Downstream results

Dataset Method COVID-19 OrgMNIST Brain

AUC F1 AUC F1 AUC F1

PET-CT HASH - 3 0.821 ± 0.004 0.764 ± 0.004 0.976 ± 0.001 0.797 ± 0.003 0.799 ± 0.012 0.687 ± 0.018
HASH - 6 0.830 ± 0.006 0.777 ± 0.016 0.978 ± 0.001 0.800 ± 0.003 0.831 ± 0.021 0.765 ± 0.027
HASH - 12 0.822 ± 0.003 0.755 ± 0.006 0.976 ± 0.001 0.796 ± 0.002 0.770 ± 0.030 0.697 ± 0.039

LIDC HASH - 3 0.813 ± 0.004 0.730 ± 0.009 0.981 ± 0.001 0.800 ± 0.002 0.790 ± 0.008 0.723 ± 0.041
HASH - 6 0.823 ± 0.005 0.768 ± 0.008 0.982 ± 0.001 0.802 ± 0.002 0.840 ± 0.016 0.800 ± 0.033
HASH - 12 0.811 ± 0.003 0.737 ± 0.013 0.980 ± 0.001 0.798 ± 0.002 0.798 ± 0.026 0.677 ± 0.026
Fig. 7. Here, we show on two pre-training CT datasets (PET-CT, LIDC) and three downstream CT classification tasks to evaluate the pre-trainings (COVID-19, OrgMNIST, Brain) that
our proposed hashing based dataset reduction method leads to shorter pre-training duration and improves downstream task performances, compared to the current state-of-the-art
approach, which uses pre-training with all slices of the dataset.
with ALL data and pre-training with the best performing method HASH-
6 by calculating the Centered Kernel Alignment CKA [52], visualizing
the t-Distributed Stochastic Neighbor Embedding [53] and visualizing
the model‘s attentions with Grad-Cam [54].

Centered Kernel Alignment CKA [52] measures the similarity of
the representations from two models at the different layers of the
models. In Fig. 8 we show the CKA between pre-training with ALL
data and pre-training with HASH-6 reduced data. The calculation was
done directly after pre-training, before fine-tuning the model for a
specific downstream task. For both pre-training datasets PET-CT and
LIDC, the plots show a relatively high similarity for early layers of
the model, but a relatively low similarity for later layers. Thus, for
both pre-training datasets, the reduction of the dataset mainly affects
the later layers of the model. In Fig. 9 we show the CKA similarity
between the model after pre-training and the model after fine-tuning.
As can be seen in the plots, fine-tuning mainly affects the later layers
of the model while the earlier layers keep similar representations to
the stage after pre-training. Now we compare in Fig. 9 the CKA plots
of pre-training with ALL data to the CKA plots of pre-training with
HASH-6 reduced data. This comparison shows that with the HASH-6
reduced data, the representations of more layers have a high similarity
between pre-training and fine-tuning, compared to pre-training with
ALL data. So the Centered Kernel Alignment CKA between pre-training
7 
and fine-tuning is higher when the HASH-6 reduced dataset is used for
pre-training.

T-Distributed Stochastic Neighbor Embedding (t-SNE) [53] is a
technique for visualizing high-dimensional data by reducing the data
to lower-dimensional spaces. We use this technique to visualize the
fully connected classifier output at the end of our model after the
convolutional layers. We propagate the images of the test datasets of
the three downstream tasks COVID-19, OrgMNIST, and Brain through
the model up to the fully connected layer and plot the values with t-
SNE to visualize the distributions of the predictions and see how well
the model can discriminate between the classes. This visualization was
done once directly after pre-training, before fine-tuning the model,
and once after fine-tuning. Fig. 10 shows the plots for the PET-CT
pre-training dataset and Fig. 11 for the LIDC pre-training dataset. We
again compare pre-training with ALL data and pre-training with HASH-
6 reduced data. After pre-training, there is no clear separation of the
different classes, neither for pre-training with ALL data nor for pre-
training with the HASH-6 reduced data. After fine-tuning, especially
for the COVID-19 and the OrgMNIST task, a clearer separation of the
classes is visible when using HASH-6 reduced pre-training compared
to ALL pre-training. As a quantitative measure, we calculated, for fine-
tuning, the Pearson Correlation Coefficient (PCC) between the t-SNE
values of the model and the target classes. We get between 2% and
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16% higher PCC values after fine-tuning when pre-training with the
HASH-6 reduced data compared to pre-training with ALL data. Thus,
the distribution of predictions indicates that the model pre-trained with
HASH-6 reduced data can better discriminate between classes after
fine-tuning compared to ALL data pre-training.

We visualize the attention region of the model with the gradient-
weighted class activation mapping Grad-Cam [54]. We generated the
attention heatmaps on the test datasets of the three downstream tasks
for both pre-training datasets. The attention heatmaps were generated
once directly after pre-training, before fine-tuning the model, and
once after fine-tuning. Fig. 12 shows three example images for each
downstream task. The attention regions were qualitatively analyzed by
two well-trained radiologists. As can be seen in the example images
in Fig. 12 for the COVID-19 and Brain downstream task, the main
attention after pre-training with ALL data is often not even in the lung
or brain region and is far away from the model’s final attention after
fine-tuning. In contrast, when pre-training with the HASH-6 reduced,
the model‘s main attention is already after pre-training mostly much
closer to the actual target and the final attention. For example, for
the COVID-19 task, in row 4, column 2, the Grad-cam image for ALL
data after pre-training shows an attention that lies outside the body
region and is far away from the final attention after fine-tuning (image
row 4, column 3). In contrast, in the Grad-cam image for the HASH-
6 reduced data after pre-training (row 4, column 4), the attention
is clearly in the lung region and already close to the final attention
after fine-tuning (row 4, column 5). And the final attention for the
HASH-6 reduced data covers the area that the well-trained radiologists
would look at much better. For the OrgMNIST task, for example in
row 6, column 6, the attention after pre-training with ALL data is
somewhere completely different from the final attention in column 7.
Meanwhile, with the HASH-6 reduced data, the attention after pre-
training is already relatively close to the final attention after fine-tuning
(row 6, column 8 and 9). For the Brain task in the last row, column
2, the attention after pre-training with ALL data is widely distributed
over the image and not close to the final attention after fine-tuning
(last row, column 3). And even the final attention does not cover the
bleeding perfectly. In contrast, after pre-training with HASH-6 reduced
data (last row, column 4), the attention is in the brain area and already
covers the bleeding almost perfectly. After fine-tuning, the attention
becomes only slightly more precise (last row, column 5). The same
pattern can be seen for most of the Grad-cam images on both pre-
training datasets and all three downstream tasks. For a quantitative
analysis, we computed the Intersection over Union (IoU) between the
heatmap after pre-training and the heatmap after fine-tuning, to see
how close the model’s attention after pre-training is already to the
model’s final attention after fine-tuning. Again, we compared pre-
training with ALL data and pre-training with HASH-6 reduced data.
For all three downstream tasks, on both pre-training datasets, we get
between 7% and 9% higher IoU values with the reduced pre-training
dataset, as with all pre-training data. Thus, with our HASH-6 reduction
approach, the model’s attention after pre-training is already closer to
the final attention after fine-tuning.

3.5. Evaluation E: Other self-supervised pre-training approaches

To show the generalizability of our results, we tested further self-
supervised pre-training approaches with the best-performing reduction
approach HASH. For this evaluation, we only use the LIDC dataset
which is smaller and thus needs less pre-training time and has less
computational effort. According to Huang et al.’s. [3] study, another
popular contrastive learning approach on convolutional neural net-
works from natural image processing that is widely utilized for med-
ical pre-training is MoCo (Momentum Contrast) [36]. MoCo has been
slightly updated in MoCo version 2 [58] and has also been successfully
applied to pre-training on CT slices [7,23]. A completely different
approach for self-supervised pre-training is masked image modeling,
8 
Fig. 8. Here we visualize the Centered Kernel Alignment CKA [52] between the model
pre-trained with ALL data and the model pre-trained with HASH-6 reduced data,
for both pre-training datasets PET-CT and LIDC. The calculations are done after pre-
training, before fine-tuning the model. On the x- and y-axis are the layers of the models
starting from zero as the first layer up to the last layer of the model. At the bottom
is a scale of the CKA value. High values of the CKA mean that the representations of
the two models are similar. The calculations are done by CKA.pytorch [55].

which has gained much popularity in the imaging field in the last few
years [59]. In a recent study, Tian et al. [39] show on ImageNet [33]
data that masked autoencoders [59], that have been mainly used for
self-supervised pre-training of transformers [3], can be adapted to
convolutional models. Masked autoencoders divide the images into
patches, mask part of the patches, and train the model to reconstruct
the original images. Due to the moderate success of this method for
convolutional models so far [3], they adapted it by using sparse con-
volutions instead of normal convolutions for the pre-training, where
they achieved comparable results to contrastive learning. In [23], their
method, called SparK, was applied to CT slices and shows similar
performance to SwAV and MoCo for self-supervised pre-training and
is particularly robust for small downstream datasets.

We compare the best-performing reduction method HASH with
threshold six against the baseline method ALL on the contrastive learn-
ing approach MoCo Version 2 and the masked autoencoder approach
SparK. To prove that our results are generalizable to other contrastive
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Fig. 9. Here we visualize the Centered Kernel Alignment CKA [52] between the model after pre-training and the model after fine-tuning. We show the plots for fine-tuning on the
three downstream tasks COVID-19, OrgMNIST, and Brain and the two pre-training datasets PET-CT and LIDC, each once for pre-training with ALL data and once for pre-training
with the HASH-6 reduced data. At the bottom is a scale of the CKA value. High values of the CKA mean that the representations of the two models are similar. The calculations
are done by CKA.pytorch [55].
pre-training methods, we expect to see performance gains with our slice
reduction method for MoCo, since, as in SwAV, less similar images
should improve the model’s ability to distinguish in latent space. On
the other hand, since there is no distinguishing involved in masked
autoencoder pre-training approaches, similar images should not be a
problem there. Thus, we expect no performance gain or slightly reduced
performance for the masked autoencoder method SparK, since less
similar images should not bring any advantage and the model just
has less training data. Detailed explanations of MoCo and Spark can
be found in Appendices B and C. Table 7 shows the downstream task
results. The contrastive learning method MoCo performs better with the
reduced dataset, analogous to the contrastive learning method SwAV
discussed earlier. For the masked autoencoder method SparK, we do not
achieve any improvements with the reduction, using all slices achieves
superior results.

4. Discussion

Self-supervised pre-training of deep learning models with con-
trastive learning on large unannotated datasets is a common and
9 
successful approach in medical imaging to cope with small annotated
datasets [3]. The most popular contrastive learning methods were
initially developed for natural image processing and transferred to the
medical domain [3]. Many methods can be directly applied to the
medical domain without adaptation; however, not all methods show
the same behavior because medical images have different structures
and color schemes [60]. In this work, we investigate the composition
of the pre-training datasets for contrastive learning on CT slices. We
perform our investigations on two large pre-training datasets separately
to ensure generalizability and evaluate the pre-trainings on three
classification downstream tasks, the benchmark task for evaluating
self-supervised pre-training [3]. Table 3 shows the results without pre-
training and Table 4, row PET-CT ALL and row LIDC ALL, show the
results when contrastive pre-training on all slices of the pre-training
dataset is applied, the current state-of-the-art [5,7]. Contrastive pre-
training improves the downstream results for the COVID-19 and the
Brain tasks with both pre-training datasets. However, for the OrgMNIST
task, we only achieve performance gains when pre-training with the
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Fig. 10. Here we visualize the T-Distributed Stochastic Neighbor Embedding (t-SNE) [53] at the fully connected classifier output after the convolutional layers of our model when
the test dataset images of the downstream tasks COVID-19, OrgMNIST, Brain are propagated through the model. The plots were generated once after pre-training and once after
fine-tuning. On the left, the model was pre-trained with ALL data, and on the right with HASH-6 reduced data. The colors of the dots indicate the target classes of the images.
COVID-19 and Brain are binary and OrgMNIST is multi-class classification tasks. The calculations are done with scikit-learn [56].
Table 7
Evaluation E: This table shows the downstream task results for pre-training with the contrastive learning (CL) approaches SwAV and MoCo Version 2 and the masked autoencoder
(MAE) approach SparK. For all three approaches, we compare pre-training with all data (All) to pre-training with the reduced dataset using the hash reduction method and
threshold 6 (Reduced) on the LIDC dataset. (Accuracy can be found in Table E.16 in Appendix E).

Pre-training Downstream results

Approach Data COVID-19 OrgMNIST Brain

AUC F1 AUC F1 AUC F1

SwAV (CL) All 0.807 ± 0.006 0.744 ± 0.013 0.972 ± 0.003 0.769 ± 0.003 0.734 ± 0.046 0.609 ± 0.072
Reduced 0.823 ± 0.005 0.768 ± 0.008 0.982 ± 0.001 0.802 ± 0.002 0.840 ± 0.016 0.800 ± 0.033

MoCoV2 (CL) All 0.824 ± 0.005 0.780 ± 0.009 0.981 ± 0.001 0.817 ± 0.001 0.825 ± 0.010 0.770 ± 0.064
Reduced 0.830 ± 0.005 0.781 ± 0.005 0.982 ± 0.003 0.820 ± 0.004 0.897 ± 0.015 0.791 ± 0.032

SparK (MAE) All 0.828 ± 0.006 0.776 ± 0.009 0.981 ± 0.001 0.808 ± 0.003 0.919 ± 0.015 0.812 ± 0.080
Reduced 0.810 ± 0.006 0.761 ± 0.020 0.978 ± 0.001 0.782 ± 0.002 0.882 ± 0.024 0.809 ± 0.051
LIDC dataset. Contrastive pre-training on all slices of the PET-CT
dataset slightly decreases the results of the OrgMNIST task by 0.003
AUC score. This shows that pre-training with contrastive learning on
CT scans does not improve downstream performance in all cases, which
is also confirmed in Huang et al.’s. [3] study.

In contrastive learning, the model is trained to distinguish be-
tween latent space representations of positive pairs coming from two
augmented views of the same original image and latent space represen-
tations of negative pairs coming from two different original images. We
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hypothesized that using each slice of a CT volume for contrastive pre-
training might lead to a model that is unable to discriminate between
positive and negative pairs since the similarity between two augmented
versions of a slice might be lower than the similarity between two
different slices. In the first experiment, we reduced the pre-training
datasets by using only every 𝑛th slice of a volume. The results listed
in Table 4 support our hypotheses, as performance improves on the
downstream tasks. Using only every 𝑛th slice of a volume increases the
variation between slices in the pre-training dataset, potentially allowing
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Fig. 11. Here we visualize the T-Distributed Stochastic Neighbor Embedding (t-SNE) [53] at the fully connected classifier output after the convolutional layers of our model when
the test dataset images of the downstream tasks COVID-19, OrgMNIST, Brain are propagated through the model. The plots were generated once after pre-training and once after
fine-tuning. On the left, the model was pre-trained with ALL data, and on the right with HASH-6 reduced data. The colors of the dots indicate the target classes of the images.
COVID-19 and Brain are binary and OrgMNIST is multi-class classification tasks. The calculations are done with scikit-learn [56].
the model to better distinguish between positive and negative pairs.
After the reduction, contrastive pre-training with SwAV outperforms
no pre-training for all tasks and pre-training datasets, including the
OrgMNIST task and pre-training on the PET-CT dataset, where we had
performance losses when pre-training with all slices.

In a second experiment, we aimed to evaluate whether there are
dataset reduction methods that are more suitable than the baseline
reduction. Further, we aimed to find the optimal threshold for the
degree of similarity between the slices that leads to the highest results
in downstream tasks. As shown in Table 5, of all evaluated methods,
the HASH method performs best on the downstream tasks, and as
shown in Table 6, a similarity threshold of six for the HASH approach
seems to ensure the best degree of similarity. These experiments lead to
the assumption that the HASH reduction approach with threshold six
ensures the best compromise between a high variation and a sufficiently
large number of samples in the pre-training dataset. Furthermore, with
an execution time of less than 30 min, the HASH dataset reduction
is computed faster than all other similarly based reduction methods
evaluated.

In a further experiment, we tested the HASH reduction method on
two other self-supervised pre-training approaches. We expected that
our results would generalize to other contrastive learning approaches
due to the identical basic concept, but that reduction would not im-
prove the results for other self-supervised pre-training methods. As
11 
shown in Table 7, pre-training with the contrastive learning approach
MoCo is improved with the HASH reduction method. This proves the
generalizability of our results to other contrastive pre-training methods,
that are trained by distinguishing between latent space representations
of augmented views and original images and thus have the problem of
too similar images. As also shown in Table 7 the masked autoencoder
pre-training method SparK performs best with all slices. Since masked
autoencoders are trained to reconstruct masked patches of images
where no distinguishing is involved, reducing the dataset does not bring
any advantage and the model just has less training data. The results in
Table 7 support our hypothesis that selective CT data reduction is ben-
eficial for contrastive pre-training due to the distinguishing challenge,
but pre-training methods that do not rely on distinguishing in latent
space do not benefit from dataset reduction.

A major benefit of pre-training dataset reduction for contrastive
learning is that we significantly reduce the pre-training time. With
less time and thus less energy cost, better pre-training results on CT
image classification downstream tasks can be achieved, as summarized
in Fig. 7.

5. Limitations

As our work shows the great potential of CT dataset reduction for
contrastive pre-training, it would be interesting to further investigate



D. Wolf et al. Computers in Biology and Medicine 183 (2024) 109242 
Fig. 12. Here we visualize the attention region of the network with Grad-Cam [54] for three example images of the COVID-19, OrgMNIST and Brain downstream tasks‘ test
datasets. The first row shows the input image, the next four rows the attention heatmaps with the PET-CT pre-training dataset, and the last four rows the attention maps with the
LIDC pre-training dataset. For both pre-training datasets, we visualize the heatmaps for pre-training with ALL data and for the best reduction approach HASH-6. We compare the
attention heatmap after the self-supervised pre-training before fine-tuning the model with the attention heatmap after the fine-tuning for the specific downstream task. The plots
are generated by pytorch-grad-cam [57].
these findings in future research. A limitation of our work is that
we only chose well-established, computationally fast dataset reduction
methods that are based on similarity calculations. For future work,
it would be interesting to see if there are other dataset reduction
techniques that could lead to even better results. For example, core-set
selection such as SVP (Selection via Proxy) [61] or CRAIG (Coresets for
Accelerating Incremental Gradient descent) [62] might be a promising
idea. However, these methods require significantly more time and
computational effort for the dataset reduction.

Another limitation of our work is that we did not investigate dif-
ferent augmentation strategies for the contrastive pre-training. The
ability to distinguish between latent space representations coming from
two augmented views of the same original image and latent space
representations coming from two different original images also depends
on the type and amount of augmentations used. We took exactly
the augmentations of the original contrastive learning publications
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SwAV [38] and MoCo [36], since they have done an intensive eval-
uation on which augmentation techniques are best suited for their
pre-training method. However, for future work, it would be interesting
to investigate different types and amounts of augmentation to see if
less data reduction is needed and if even better results can be achieved.
Furthermore, it would be interesting to better understand why exactly
the HASH method leads to the best results and if this is dependent on
the used augmentation methods.

A further limitation is that our experiments were performed with
only one deep learning model. Analogous to the original publica-
tions of the two self-supervised pre-training methods SwAV [38] and
MoCo [36], we chose the ResNet50 [32] as our model, due to its
widespread use as a baseline for comparisons in vision studies [47] that
were later successfully transferred to other models and its popularity
in medical image analysis [46]. For further research, it would be
interesting to apply our findings to other deep learning models as well.
Furthermore, applying our results to other modalities of volumetric
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images consisting of consecutive slices like MRI or PET, would be
possible for future research projects.

In addition to the very important task of CT image classifica-
tion with a lot of ongoing research [3,63] CT image segmentation is
another popular task in medical imaging. We have tested our self-
supervised pre-trained classification model on several segmentation
tasks by adding a U-Net [48] decoder to the pre-trained ResNet50.
However, we did not achieve any performance gains with our pre-
training, neither on ALL data nor on HASH-6 reduced data. Thus,
a clear limitation of our work is that our results cannot be directly
applied to downstream segmentation tasks. As shown in [64], pure
contrastive pre-training with methods from the RGB imaging domain
only on the encoder does not lead to significant performance gains
for segmentation downstream tasks. Instead, other specific pre-training
methods for segmentation can lead to improved performance. For
future work, it would be interesting to further investigate our findings
on such segmentation-optimized contrastive learning methods.

Another idea would be to combine our findings with the work of
Joshua, et al. [65]. With our proposed HASH-6 approach, slices that
are too similar to be distinguished by the model when using contrastive
pre-training can be identified and removed from the dataset before the
training. Joshua, et al. developed a method to improve the model‘s
pre-training, by targeting the samples that turn out to be difficult for
the model to distinguish during the training. This is done by analyzing
in the latent space which images the model places close together, but
should actually be far apart, as they are negative samples that should
be pushed apart in the latent space. These samples, called hard negative
samples, are pushed apart by a special loss function. So one possibility
would be to first apply our approach to filter out images that are too
similar to be meaningfully distinguished. Then, hard negative mining
could be applied to further improve the pre-training by targeting cases
that turn out to be still difficult for the model during the training. Hard
negative mining by Joshua, et al. has originally been developed on RGB
images. We see strong potential in adapting this method to CT slices
and exploring the combination of the two approaches.

By performing pre-training and fine-tuning with a 2D model on
the slices of CT scans instead of using a 3D model on volumes, we
ensure low computational costs for inference on downstream tasks so
our findings can be applied globally without requiring powerful GPUs.
However, training 3D models on volumes and training 2D models on
slices are both widely used approaches for deep learning on CT scans,
with several recent publications demonstrating excellent results for
clinically relevant CT imaging tasks on both 3D [11,12], and 2D [13–
16] models. Both approaches have their advantages. After evaluating
the pre-training dataset composition for contrastive pre-training of 2D
models on CT slices, for future work, an evaluation of the properties of
pre-training datasets with entire volumes would be interesting.

6. Conclusion

In our work, we investigate how to exploit the characteristics of
CT datasets to improve contrastive pre-training. We hypothesized that
using all slices in each CT volume of a pre-training dataset may lead
to performance degradation due to the low variation in the data.
The experiments, with over 2000 pre-training hours, support our hy-
pothesis. In conclusion, we propose to reduce pre-training datasets
using the HASH method and a threshold of six. This approach leads
to considerable performance gains in classification downstream tasks
in all our experiments and outperforms the other evaluated dataset
reduction methods. The time to reduce the datasets using the HASH
approach is negligibly short, with execution times of less than half an
hour, while the pre-training duration is substantially reduced. Research
on CT data with contrastive learning in the future can incorporate our
findings to improve their performance on classification tasks and speed
up learning by reducing their pre-training dataset with our proposed
method.
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Appendix A. Contrastive learning with SwAV

SwAV [38] starts with a large dataset of images 𝐼 = {𝐼1, 𝐼2, 𝐼3,…}.
or all images in one mine-batch with batch-size 𝐵𝑠, two random
ransformations are performed in order to obtain two randomly dif-
erent images from each original image: 𝐴 = {𝐴1, 𝐴2, 𝐴3,… , 𝐴𝐵𝑠} and
𝐵 = {𝐵1, 𝐵2, 𝐵3,… , 𝐵𝐵𝑠}. The transformed images are computed by a
deep learning, which can be any convolutional encoder followed by an
MLP, to a latent space representation: 𝐴𝑄 = {𝐴𝑄1, 𝐴𝑄2, 𝐴𝑄3,… , 𝐴𝑄𝐵𝑠}
and 𝐵𝑄 = {𝐵𝑄1, 𝐵𝑄2, 𝐵𝑄3,… , 𝐵𝑄𝐵𝑠}. The latent space representations
are further computed by feature clustering with cluster prototypes 𝐶 =
{𝐶1, 𝐶2, 𝐶3,… , 𝐶𝐾}, which leads to the cluster codes

𝐴𝑄𝐶 = {1
𝜏
⋅ 𝐴𝑄𝑇 ⋅ 𝐶1,… , 1

𝜏
⋅ 𝐴𝑄𝑇 ⋅ 𝐶𝐾} (A.1)

and

𝐵𝑄𝐶 = {1 ⋅ 𝐵𝑄𝑇 ⋅ 𝐶 ,… , 1 ⋅ 𝐵𝑄𝑇 ⋅ 𝐶 } (A.2)

𝜏 1 𝜏 𝐾

https://covid-ct.grand-challenge.org/
https://github.com/Wolfda95/Less_is_More


D. Wolf et al.

h
t
𝐵

a

m
t
a
T
s
G
0

m
t
i
b
a

m

c

c
o
c
a

𝐿

Computers in Biology and Medicine 183 (2024) 109242 
Table A.8
Hyperparameters for pre-training with SwAV.

Parameters Values

Input size 512
Numb. of crops 2; 6
Size of crops 224; 96
Min scale crops 0.90; 0.10
Max scale crops 1.0; 0.33
Optimizer Lars
Batch size 128
Learning rate 0.15
Weight decay 1e−6
Max epochs 800
Sinkhorn iterations 3
Number prototypes 500
Freeze prototypes 313
Size MLP 2048
Output dimension 128

with the temperature value 𝜏 and the number of prototypes 𝐾 as
yperparameters. The model is trained to predict the cluster codes of
ransformed images 𝐴 by the cluster codes of the transformed image

and the other way around within one min-batch by applying a
cross-entropy loss with swapped predictions

𝐿 = −
𝐾
∑

𝑘=1
𝐵𝑄𝐶

𝑘
⋅ log (𝐴𝑄𝐶∗

𝑘
) −

𝐾
∑

𝑘=1
𝐵𝑄𝐶

𝑘
⋅ log (𝐵𝑄𝐶∗

𝑘
), (A.3)

where the terms 𝐴𝑄𝐶∗
𝑘

and 𝐵𝑄𝐶∗
𝑘

are the softmax activation functions
pplied to the cluster codes.

As transformations, SwAV uses color jitter, Gaussian blur, and a
ulti-crop strategy, where two transformed images 𝐴 and 𝐵 are ob-

ained by cropping a part of the original image with a larger crop size,
nd several additional samples are cropped with a smaller crop size.
he transforms are implemented with torchvision with the following
ettings: two large crops of size 224, four small crops of the size 94,
aussian blur with probability 0.5, and color jitter with probability
.8 and channels (0.4, 0.4, 0.2, 0.2). The cluster prototypes 𝐶 are learned

during training. The computed cluster codes 𝐴𝑄𝐶 and 𝐵𝑄𝐶 of one
ini-batch should be equally partitioned by the prototypes. To ensure

his equal partitioning and to avoid the trivial solution where all
mages collapse into the same code, the cluster codes are computed
y maximizing the similarity between the latent space representations
nd the prototypes with the constraint

ax
𝐴𝑄𝐶

Tr(𝐴𝑄𝐶𝑇𝐶𝑇𝐴𝑄) + 𝜖𝐻(𝐴𝑄), (A.4)

were 𝐻 is the entropy and 𝜖 a regularization parameter. The same
onstraint for transform 𝐵. The clustering is performed by using the

iterative Sinkhorn–Knopp algorithm [67].
Table A.8, shows the hyperparameters for pre-training with SwAV.

We choose the hyperparameters exactly as in the original SwAV paper.

Appendix B. Contrastive learning with MoCo

MoCo [36] starts with a large dataset of images {𝐼1, 𝐼2, 𝐼3,…},
where two random transformations are performed to obtain two ran-
domly different images from each original image: {𝐴1, 𝐴2, 𝐴3,…} and
{𝐵1, 𝐵2, 𝐵3,…}. Starting, for example, with the original image 𝐼5, the
transformed image 𝐴5 is computed by an encoder to the latent space
representation 𝐴𝑄5, and the transformed image 𝐵5 is computed by
a momentum encoder to the latent space representation 𝐵𝑄5. The
encoders have the same architecture and can be any convolutional
deep learning model. A dictionary is used to store the computed latent
space representation of the momentum encoder 𝐵𝑄5 together with the
latent space representations of the momentum encoder from previous
images 𝑑𝑖𝑐𝑡[..., 𝐵𝑄2, 𝐵𝑄3, 𝐵𝑄4, 𝐵𝑄5]. The samples in the dictionary are
called keys. Inside the dictionary, there is now one key that comes
14 
Table B.9
Hyperparamters for pre-training with MoCo.

Parameters Values

Input size 512
Number of crops 2
Size of crops 224
Optimizer SGD
Batch size 64
Learning rate 1e−4
Momentum 0.9

from the same original image as the latent space representation of
the encoder. In our example, this is 𝐵𝑄5 and the pair 𝐴𝑄5 + 𝐵𝑄5 is
alled positive pair. The other keys in the directory come from different
riginal images. The pairs 𝐴𝑄5 + 𝐵𝑄4, 𝐴𝑄5 + 𝐵𝑄3, 𝐴𝑄5 + 𝐵𝑄2, . . . are
alled negative pairs. The model is trained to classify between positive
nd negative pairs by computing the InfoNCE loss

10 = − log
exp (𝐴𝑄5 ⋅ 𝐵𝑄𝑘∕𝜏)

∑5
𝑖=0 exp (𝐴𝑄5 ⋅ 𝐵𝑄𝑘∕𝜏)

, (B.1)

which calculates a similarity score and where 𝜏 is a temperature
hyperparameter.

MoCo Version 2 [58] is an updated version of MoCo that adds
an MLP projection head to the encoder and additional data transfor-
mations. As transformations, MoCo V2 uses random crop, horizontal
flip, and Gaussian blur. The transforms are implemented with torchvi-
sion with the following settings: two crops of size 224, Gaussian blur
with probability 0.5, color jitter with probability 0.8 and channels
(0.4, 0.4, 0.2, 0.2), and horizontal flip with probability 0.5.

Table B.9, shows the hyperparameters for pre-training with MoCo
V2. We choose the hyperparameters exactly as in the original paper.

Appendix C. Masked autoencoder with SparK

Inspired by natural language processing, where models are pre-
trained by predicting missing words in a sentence, masked autoen-
coders pre-train vision models by dividing the images into patches,
masking some of the patches, and training the model to reconstruct
the original unmasked images [5]. SparK [39] is the first successful
adaption of masked autoencoders to Convolutional neural networks.

Starting with a large dataset of images {𝐼1, 𝐼2, 𝐼3,…}, each image is
divided into non-overlapping square patches and each patch is masked
independently with a given probability, called ‘‘mask ratio’’. The model
consists of an encoder, which can be any convolutional model and
a decoder. The encoder is adapted to perform submanifold sparse
convolutions, which only compute when the center of a sliding window
kernel is covered by a non-masked element. The decoder is built in a
U-Net [48] design with three blocks of upsampling layers. The empty
parts of the feature maps computed by the encoder are filled with
learnable mask embeddings before being computed by the decoder.
After the decoder, a head module is applied with two more upsampling
layers to reach the original resolution of the input image. The model
is trained with an L2 Loss between the predicted images of the model
{𝐼∗1 , 𝐼

∗
2 , 𝐼

∗
3 ,…} and the original images {𝐼1, 𝐼2, 𝐼3,…}, computed only on

masked positions. For the downstream tasks, only the encoder is used.
Table C.10, shows the hyperparameters for pre-training with SparK.

We choose the hyperparameters exactly as in the original paper.

Appendix D. Downstream task brain

Brain hemorrhage, also known as intracranial hemorrhage, is a con-
dition characterized by bleeding inside the skull [68]. Rapid diagnosis
is critical because of the potential complications it can cause, including
brain swelling, brain infection, or death of brain matter. The etiology
of this bleeding is the rupture of blood vessels within the skull, which
can be caused by factors such as physical trauma or stroke [68].
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Table C.10
Hyperparameters for pre-training with SparK.

Parameters Values

Input size 512
Patch site 32 × 32
Mask ratio 60%
Augmentations Horizontal flip, crop
Batch size 32
Optimizer LAMB
Learning rate Cosine Annealing (peak: 25e−6)

Table D.11
Downstream task Brain:.

Parameters Values

Format DICOM
Area Brain
Window center 35/700 HU
Window width 80/3020 HU
Tube voltage 100–120 kV
Slice thickness 1 mm
CTDI 33–45
DLP 490-805 mgy⋅cm
Type No Contrast-Enhanced
Size 512 × 512
Kernel Soft Tissue
Scanners PHILIPS Brilliance iCT 256

Siemens Somatom Definition AS+
Siemens Somatom Edge Plus

Gender Unknown (anonymization)
Age Unknown (anonymization)

Table E.12
This table shows the results of the three downstream tasks COVID-19, OrgMNIST, and
Brain without using any pre-training. The weights of the model are initialized with
PyTorch’s standard random initialization.

Pre-training Downstream results

Dataset Method COVID-19 OrgMNIST Brain
Acc Acc Acc

– – 0.673 ± 0.026 0.755 ± 0.003 0.596 ± 0.034

Table E.13
Evaluation A: This table compares the baseline pre-training method ALL, the current
state-of-the-art, which uses all slices of a CT dataset for contrastive pre-training,
with the baseline reduction pre-training method EveryN. Pre-training with SwAV is
performed on the datasets PET-CT and LIDC with all slices, with 20% of the slices
by using every fifth slice, and with 10% of the slices, by using every tenth slice.
The different pre-trainings are evaluated on the three downstream tasks COVID-19,
OrgMNIST, and Brain.

Pre-training Downstream results

Dataset Method COVID-19 OrgMNIST Brain
Acc Acc Acc

PET-CT ALL 0.685 ± 0.012 0.752 ± 0.003 0.628 ± 0.100
EveryN 20% 0.743 ± 0.015 0.789 ± 0.002 0.738 ± 0.047
EveryN 10% 0.755 ± 0.005 0.793 ± 0.020 0.772 ± 0.015

LIDC ALL 0.712 ± 0.015 0.769 ± 0.003 0.681 ± 0.058
EveryN 20% 0.738 ± 0.009 0.801 ± 0.003 0.681 ± 0.034
EveryN 10% 0.746 ± 0.013 0.802 ± 0.002 0.683 ± 0.013

An internal dataset with CT slices from 100 patients with and 100
atients without brain hemorrhage was selected by the two well-trained
enior radiologists, Dr. Ch. G. Lisson and Dr. Ca. S. Lisson from the
niversity Hospital of Ulm. Table D.11 shows details of the selected
lices.
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Table E.14
Evaluation B: This table compares different methods for reducing the pre-training
datasets to 10% of the slices. The first method is the baseline reduction method EveryN,
which reduces the pre-training dataset by using every tenth slice, followed by the
similarity based methods, which perform a pairwise comparison of all slices in a CT
volume and remove one slice from pairs with high similarity.

Pre-training Downstream results

Dataset Method COVID-19 OrgMNIST Brain
Acc Acc Acc

PET-CT EveryN 0.755 ± 0.005 0.793 ± 0.020 0.772 ± 0.015
SSIM 0.752 ± 0.007 0.796 ± 0.002 0.770 ± 0.012
MI 0.730 ± 0.006 0.798 ± 0.004 0.772 ± 0.015
DeepNet 0.712 ± 0.002 0.799 ± 0.003 0.769 ± 0.013
HASH 0.758 ± 0.008 0.800 ± 0.003 0.775 ± 0.015

LIDC EveryN 0.746 ± 0.013 0.802 ± 0.002 0.683 ± 0.013
SSIM 0.746 ± 0.006 0.802 ± 0.001 0.758 ± 0.028
MI 0.748 ± 0.028 0.803 ± 0.004 0.734 ± 0.024
DeepNet 0.727 ± 0.016 0.801 ± 0.006 0.706 ± 0.054
HASH 0.749 ± 0.009 0.803 ± 0.003 0.759 ± 0.019

Table E.15
Evaluation C: This table compares different similarity thresholds of the best performing
reduction method HASH, in order to obtain the optimal degree of similarity between
the slices for contrastive pre-training.

Pre-training Downstream results

Dataset Method COVID-19 OrgMNIST Brain
Acc Acc Acc

PET-CT HASH - 3 0.749 ± 0.003 0.797 ± 0.002 0.724 ± 0.022
HASH - 6 0.764 ± 0.014 0.799 ± 0.033 0.793 ± 0.022
HASH - 12 0.739 ± 0.008 0.793 ± 0.002 0.703 ± 0.051

LIDC HASH - 3 0.728 ± 0.008 0.803 ± 0.004 0.752 ± 0.040
HASH - 6 0.755 ± 0.008 0.804 ± 0.003 0.806 ± 0.035
HASH - 12 0.726 ± 0.011 0.798 ± 0.003 0.717 ± 0.033

Table E.16
Evaluation E: This table shows the downstream task results for pre-training with the
contrastive learning (CL) approaches SwAV and MoCo Version 2 and the masked
autoencoder (MAE) approach SparK. For all three approaches, we compare pre-training
with all data (All) to pre-training with the reduced dataset using the hash reduction
method and threshold 6 (Reduced) on the LIDC dataset.

Pre-training Downstream results

Approach Data COVID-19 OrgMNIST Brain
Acc Acc Acc

SwAV (CL) All 0.712 ± 0.015 0.769 ± 0.003 0.681 ± 0.058
Reduced 0.755 ± 0.008 0.804 ± 0.003 0.806 ± 0.035

MoCoV2 (CL) All 0.753 ± 0.014 0.817 ± 0.001 0.800 ± 0.003
Reduced 0.756 ± 0.005 0.819 ± 0.004 0.814 ± 0.032

SparK (MAE) All 0.746 ± 0.005 0.783 ± 0.012 0.845 ± 0.003
Reduced 0.735 ± 0.013 0.782 ± 0.002 0.841 ± 0.042

Appendix E. Accuracy of all experiments

See Tables E.12–E.16.
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