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Abstract

Current approaches for 3D scene graph prediction rely
on labeled datasets to train models for a fixed set of known
object classes and relationship categories. We present
Open3DSG, an alternative approach to learn 3D scene
graph prediction in an open world without requiring labeled
scene graph data. We co-embed the features from a 3D scene
graph prediction backbone with the feature space of pow-
erful open world 2D vision language foundation models.
This enables us to predict 3D scene graphs from 3D point
clouds in a zero-shot manner by querying object classes
from an open vocabulary and predicting the inter-object
relationships from a grounded LLM with scene graph fea-
tures and queried object classes as context. Open3DSG is
the first 3D point cloud method to predict not only explicit
open-vocabulary object classes, but also open-set relation-
ships that are not limited to a predefined label set, making
it possible to express rare as well as specific objects and
relationships in the predicted 3D scene graph. Our exper-
iments show that Open3DSG is effective at predicting ar-
bitrary object classes as well as their complex inter-object
relationships describing spatial, supportive, semantic and
comparative relationships.

1. Introduction
3D scene graphs are an emergent graph-based representa-
tion facilitating various 3D scene understanding tasks. In
contrast to other more object-centric 3D scene representa-
tions, the key advantage of 3D scene graphs is the ability to
also represent relationships between scene entities, such as
for instance objects in a room. These relationships can be
useful for a variety of different downstream tasks in com-
puter vision or robotics, such as place recognition, change
detection, task planning and more [1, 26, 34, 44, 53]. How-
ever, the exploitation of 3D scene graphs is limited by their
availability.

Given their complexity and high-level abstraction, 3D
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Figure 1. Open3DSG. We present Open3DSG the first approach
for learning to predict open-vocabulary 3D scene graphs from 3D
point clouds. The advantage of our method is that it can be queried
and prompted for any instance in the scene, such as the TV and
Wall, to predict fine-grained semantic descriptions of objects and
relationships. By considering all instance pairs in the scene, we can
reconstruct a complete explicit open-vocabulary 3D scene graph.

scene graphs are hard to predict by learned models. The
state-of-the-art (SOTA) methods for 3D scene graph pre-
diction are limited to a fixed set of object and relationship
labels provided by small-scale datasets. This reduces their
effectiveness in downstream applications, which often re-
quire semantic reasoning on concepts extending beyond a
rather narrow scope of training data. Furthermore, one of
the most useful properties of scene graphs is their ability
to represent relationships between scene entities. There are
multiple ways of describing a relationship between two ob-
jects, e.g. spatial, comparative, semantic, etc. The relevance
of the type of relationship is dictated by the downstream
task. However, in a closed-set supervised training setting
this choice is made and fixed in advance.

Open-vocabulary 3D scene understanding methods pro-
pose a solution towards these challenges by training a model
not on a fixed label set but rather aligning the 3D model
with 2D foundation models [14, 15, 18, 20, 31, 41]. By do-
ing so, e.g. with foundation models such as CLIP [33], the
3D model can express nearly the same broad vocabulary
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that these vision language models (VLMs) were trained on.
However, while these 2D models are very capable of pre-
dicting single objects or higher-level concepts, they do not
perform well in modeling compositional structures such as
relationships or attributes [50, 52]. This limitation makes it
challenging to adopt 2D VLMs for scene graph predictions
where compositional relationships are the core part.

In this paper, we demonstrate that intuitive CLIP-like
approaches are ill-suited for open-vocabulary relationship
prediction. To this end, our key idea is to combine the ad-
vantages of VLMs with large language models (LLMs), that
have proven to be better at understanding compositional con-
cepts [16], to predict open-vocabulary 3D scene graphs.
We highlight the following three contributions:
• We are the first to present a method to create an inter-

active graph representation of a scene from a 3D point
cloud, which can be queried for objects and prompted for
relationships during inference time.

• We show how such a representation can be converted into
an explicit open-vocabulary 3D scene graph. Thus effec-
tively proposing the first open-vocabulary scene graph
prediction approach from 3D point cloud data.

• Our proposed approach shows promising results on the
closed-set benchmark 3DSSG [44], proving success in
modeling compositional concepts in an open-vocabulary
manner.

2. Related Work
3D scene graph prediction. 3D scene graphs were first
proposed by Armeni et al. [2] as a hierarchical structure
to combine entities such as buildings, rooms, objects and
cameras into a unified structure. Following their inception,
subsequent works improved upon the estimation of such
hierarchical 3D scene graphs for large-scale environments
[17, 36, 37]. Other 3D scene graph approaches rather fo-
cus on predicting local semantic inter-object relationships
and building a graph of objects [21, 44–48, 55, 58]. The
applications of these 3D scene graphs are plentiful, with
uses in aligning 3D scans [38], reconstructing and gener-
ating 3D scenes [9, 22], forecasting scene change [26], or
even task planning over 3D scene graphs [1, 34]. However,
none of these approaches consider the topic of open vo-
cabulary in the context of 3D scene graphs. Cheng et al.
are the first to model an implicit scene graph representa-
tion for planning in navigation tasks which they call OVSG
[4] – an open-vocabulary 3D scene graph model – however
they do not predict any open-vocabulary relationships from
sensor data and are reliant on human descriptions which
are encoded in the scene graph using a language model for
open-vocabulary lookup and matching. Another approach
to explore open-vocabulary 3D scene graphs is Concept-
Graphs [13] which is concurrent work to ours. Concept-
Graphs utilizes 2D VLMs and captioning models to predict

scene graphs with queryable nodes and stored summarized
image captions for edges. However, they do not provide ex-
tensive evaluations for their predicted scene graphs, limiting
themselves to a qualitative evaluation of spatial relationships
with Amazon Turk. We identify that the core difference of
our approach to ConceptGraphs and OVSG, is that we learn
to predict 3D scene graphs directly from raw point clouds,
which brings numerous advantages such as being able to
predict 3D scene graphs at test time without requiring infer-
ence from computationally expensive VLMs and when only
3D scans are available. We also predict explicit semantic
relationships as part of our method and do not have to store
multiple captions per edge that describe the relationship.
Open-vocabulary 3D scene understanding. The recent
success of 2D vision language models as open-vocabulary
methods such as CLIP [33], ALIGN [19], or ImageBind [12]
have motivated the process of adapting these foundation
models for 3D scene understanding tasks such as seman-
tic/instance segmentation or 3D open-vocabulary detection.
One of the earliest lines of approaches [14, 15, 57, 59] and
also ConceptGraphs [13] explore annotation-free 3D recog-
nition by combining CLIP with a 3D detection head using
available RGB-D images with known poses. However, these
approaches can suffer from inaccurate 2D-3D projections
and occlusion artifacts. Furthermore, RGB-D images with
known poses are not always available. Therefore, more re-
cently approaches such as OpenScene [31], LERF [20] and
others [18, 28, 41, 56] aim to distill the knowledge of those
2D vision language models into a 3D architecture with the
advantage that these approaches do not rely on available
2D images when performing inference on 3D data. After
the distillation, these approaches demonstrate impressive
open-vocabulary results and unique abilities such as local-
izing rare objects in large 3D scans. However, their accu-
racy on closed vocabulary benchmarks still falls short of
fully-supervised methods that are specifically trained on one
dataset.

However, in contrast to our goal, none of these 3D scene
understanding approaches has attempted to model 3D rela-
tionships which are hard to learn and distill based on their
compositional nature.
Compositionality in vision-language models. While
vision-language models show impressive performances in
zero-shot image retrieval or image classification [12, 19,
33, 43, 54], they lack complex compositional understand-
ing. Yuksekgonu et al. [52] and Yamada et al. [50] identified
that contrastive vision-language pre-trained models such as
CLIP [33] tend to collapse to a bag-of-words representation,
which cannot disentangle multi-object concepts. To this end,
a number of benchmarks have surfaced to examine the com-
positional reasoning capabilities of current vision language
models [16, 29, 42, 52]. Yet, attempts to improve compo-
sitional understanding of contrastive vision-language pre-
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Figure 2. Open3DSG overview. Given a point cloud and RGB-D images with their poses, we distill the knowledge of two vision-language
models into our GNN. The nodes are supervised by the embedding of OpenSeg [11] and the edges are supervised by the embedding of the
InstructBLIP [7] vision encoder. At inference time, we first compute the cosine similarity between object queries encoded by CLIP [33] and
our distilled 3D node features to infer the object classes. Then we use the edge embedding as well as the inferred object classes to predict
relationships for pairs of objects using a Qformer & LLM from InstructBLIP.

trained models by utilizing additional data, prompting, mod-
els, losses and/or hard negatives [3, 10, 30, 35, 40, 52] yield
only marginal improvements on these benchmarks. Further-
more, it is unclear whether these models achieve these im-
provements by actually acquiring compositional understand-
ing or by exploiting biases in these benchmarks as indicated
in [16].

Predicting relationships in a scene graph requires compo-
sitional understanding. In this paper, we approach this prob-
lem by shifting from a discriminative zero-shot approach to
a generative approach using an LLM.

3. Method
The overall goal of our approach is to distill the knowledge
of 2D vision-language models into a 3D graph neural net-
work (GNN) to predict open-vocabulary 3D scene graphs in
a 2-step process. We first construct an initial graph represen-
tation (Sec. 3.1), and in parallel, we extract vision-language
features from aligned 2D images (Sec. 3.2). These features
are then aligned to the ones extracted via the 3D GNN
(Sec. 3.3), so that we can predict the same language-aligned
features from 3D data only. At inference time, we perform
a two-step prediction for objects and relationships. First,
we predict object classes via a cosine similarity between
the distilled features and open-vocabulary queries encoded
by CLIP [33]. Then, we predict inter-object relationships
by providing the learned relationship feature vector and the
predicted object classes as context for a LLM (Sec. 3.4). An
overview of our method is shown in Fig. 2.

3.1. Scene graph construction

Given a point cloudP of a scene with class-agnostic instance
segmentation M provided by an off-the-shelf instance seg-
mentation method such as Mask3D [39] or the dataset itself,
we extract each object point cloud Pi containing instance i
using the mask Mi. Further, we extract point clouds Pij of
the instance pair ⟨i, j⟩ ∈ |M| × |M|, by selecting all points
falling within the union of their respective bounding boxes
Bij = Bi ∪ Bj .

We construct an initial graph with node features ϕn and
edge features ϕe. Each point set Pi is fed into a shared Point-
Net [32] to extract features for object nodes. Every point set
Pij is concatenated with a mask which is equal to 1 if the
point corresponds to object i, 2 if the object corresponds to
object j, and 0 otherwise. The concatenated feature vector
is then fed into another shared PointNet to extract features
for predicate edges.

The extracted node and edge features are then arranged
as triplets tij = ⟨ϕn,i, ϕe,ij , ϕn,j⟩ in a graph structure. This
initial feature graph is passed into a GNN that processes the
triplets tij and propagates the information through the graph

ϕ
(k)
n,i , ϕ

(k)
e,ij , ϕ

(k)
n,j = G(ϕn,i, ϕe,ij , ϕn,j) (1)

where G(·) is a GNN and ϕ
(k)
n,i , ϕ

(k)
e,ij , ϕ

(k)
n,j are the refined

features after k iterations of the GNN.

3.2. 2D feature extraction
Frame selection. The first step for aligning our 3D GNN
with the 2D vision-language models is to extract 2D fea-
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Figure 3. Supervision feature extraction. For each instance in the 3D point cloud, we select the top k frames for object and predicate
supervision. For objects, we encode the frames using OpenSeg [11] and aggregate the computed features over the projected points. For
predicates, we identify object pairs in the frame, crop the image at multiple scales and compute the image feature with the BLIP [7] image
encoder. The features are aggregated over all crops. Finally, both object and predicate features are fused across the multiple views.

tures from the available 2D images and project them onto the
constructed 3D feature graph. Selecting high-quality frames
where the desired objects are visible is crucial to obtain ro-
bust and high-quality features. To achieve this, we utilize the
same class-agnostic instance mask already used before to se-
lect a small subset of frames containing each pair of objects
to be aligned with nodes and edges in the produced graph.

To estimate whether an object of instance i is visible
in frame k, we use the camera’s intrinsic I and extrinsics
(Rk|tk) to project all points Pi onto the image plane of
frame k. We define the projection of a single point pi be-
longing to instance i projected into frame k with pik =
(u, v, w)T = projk(pi) = I·(Rk|tk)·pi where we represent
pi in homogeneous coordinates. We consider a point falling
into the image plane if u/w falls in the interval [0,W − 1]
and likewise if v/w falls in the interval [0, H − 1], where
W and H are the image width and height dimension re-
spectively. Furthermore, we discard each point pik that is
occluded from the point of view of frame k, for which the
inequality w − dk > tocc is satisfied, where dk is the mea-
sured depth for pixel (u, v), w is the estimated depth of the
object instance for the same pixel, and tocc is a fixed thresh-
old hyperparameter. We denote the set of projected points
passing the validity checks as Pik. Subsequently, we com-
pute a visibility percentage as

vis(i, k) =
|Pik|
|Pi|

(2)

expressing the ratio of object points that are successfully
projected onto the image frame. From the projected
points, we can estimate their bounding box in the image as

boxik = [minx(Pik),miny(Pik),maxx(Pik),maxy(Pik)].
Following this projection routine, each object instance i can
be projected onto multiple frames. To ensure high-quality
visual features, we choose a subset of high-quality frames
by rejecting low-quality ones based on the condition

vis(i, k) > tvis ∨ A(boxik) > tbox (3)

where tvis and tbox are hyperparameters, and A(·) computes
the area of the given bounding box. We consider the bound-
ing box area as an additional condition since large objects,
such as floor or wall, might cover a huge portion of the scene,
leading to a low visibility percentage for the current frame.
In the end, we choose the top-k frames with the highest qual-
ity. For relationship frame selection, the process is similar,
but we consider two object instances Pi and Pj simultane-
ously and a candidate frame has to satisfy Eq. (3) for both
objects. The process of selecting both object and relation-
ship frames is shown in Fig. 3 box 1.

Object feature computation. In order to achieve a coher-
ent language-aligned object feature, we decide to leverage
a VLM and collect the extracted features in a single repre-
sentation. We choose OpenSeg [11] over CLIP [33], since
the latter returns a global feature vector for the entire im-
age or provided crop. This might also include extracted fea-
tures regarding other parts of the image that are not relevant,
while OpenSeg outputs pixel-wise embeddings. We provide
an ablation for the advantages of using OpenSeg in Tab. 3.
Thus, limiting the collected features to the ones related to
the object improves our results. Consequently, from the se-
lected top-k images we use OpenSeg to compute pixel-wise
language-aligned features for object i and we compute a
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global language-aligned embedding for the object by aggre-
gating pixel-embeddings of the projected pixels Pik using
average-pooling. This step can be observed in box 2a. in
Fig. 3.

Relationship feature computation. Similar to extracting
per-object features, we also want to extract a global
language-aligned feature embedding for relationships
between two objects. Again we make use of VLM and
decide to use InstructBLIP [7] since we identify in Sec. 2
that CLIP-like models are ill-suited to express composi-
tional knowledge. Thus we use a BLIP-like model which
visual feature embedding can be grounded with language
to attend to the desired subjects. Given the top-k images
where both object instance i and j are visible, we crop
the image to the union of their respective bounding boxes
boxk

ij = boxik ∪ boxjk. Then, we encode the crop at multi-
ple scales using the BLIP image encoder from InstructBLIP
to align the features with the InstructBLIP language model.
Providing multiple scales of the same crop has been shown
beneficial to provide important context information in [20]
and [41]. The embedded crops are then aggregated using
average-pooling. This step can be observed in Fig. 3 box 2b.

Feature aggregation. To provide a more robust and view-
independent visual feature for objects and relationships, we
average-pool all the global object features, and all the global
relationship features previously extracted from each of the
top-k frames. This results in two new global robust visual
features: f 2D

o,i for object i, and f 2D
r,ij for relationship between

objects i and j. The set of all the object features and rela-
tionship features are denoted by F2D

o = {f 2D
o,1, ..., f

2D
o,N} and

F2D
r = {f 2D

r,1, ..., f
2D
r,M} respectively.

3.3. Graph distillation

The projected 2D object F2D
o and predicate F2D

r features can
be directly used to predict 3D scene graphs if camera pose,
depth and color images are available. However, in some cir-
cumstances, only 3D meshes or point clouds are provided.
Furthermore, the fused 2D features can suffer from occlu-
sions or prediction inconsistencies, resulting in noisy fea-
tures. Therefore, we choose to distill the knowledge of the
2D vision-language models into a 3D network that operates
on point clouds. To the best of our knowledge, the most suit-
able way to predict scene graph from 3D data is to leverage
a GNN architecture.

Specifically, given a point cloud P , we construct a
graph G as defined in Sec. 3.1. We use the GNN ar-
chitecture with message passing as proposed in [44]
to output vision-language-aligned object node features
as F3D

o = {f 3D
o,1, ..., f

3D
o,N} with N being the number

of nodes, and relationship edge encoding features as
F3D

r = {f 3D
r,1, ..., f

3D
r,M} with M being the number of edges.

To enforce the vision-language alignment for our 3D

graph features, we define a training objective using a co-
sine similarity loss between the 2D vision-language features
and the 3D features for nodes and edges

L = 1− cos(F2D
o ,F3D

o ) + 1− cos(F2D
r ,F3D

r ). (4)

Using this training objective, we distill the broad knowledge
from the 2D vision-language foundation models into our 3D
GNN. The process is depicted in Fig. 2.

After the distillation, the 3D graph features live in the
same embedding space of the 2D vision-language founda-
tion models.

3.4. Prediction and filtering

2D-3D Feature fusion. At inference time, we can perform
open-vocabulary 3D scene graph prediction using only the
distilled 3D features. However, if 2D images are available,
we choose to fuse the 2D and 3D features in f 2D3D

o,i and f 2D3D
r,ij

by average pooling the two for each feature pair 2D-3D.
This is inspired by Peng et al. who observed in [31] that
2D features are beneficial to predict small objects, while
3D features yield good predictions for large objects with
distinctive shapes. From this 2D-3D ensemble, we can infer
node object classes and inter-object relationships in a two-
step manner. First, we predict the object class of each node,
and then using the inferred object classes we predict the
relationship label on the edge between the classes.

Node prediction. As the first step to predict full open-
vocabulary 3D scene graphs, we infer the object class la-
bel of each node from an open-vocabulary of arbitrary text
prompts. These text prompts are encoded using the CLIP
[33] text encoder to get the text features T = {t1, ..., tN},
which are aligned with the OpenSeg [11] vision model and
where N is the number of candidate classes. To classify
the object class, we compute the cosine similarity between
the candidate text prompts and the 2D-3D ensemble graph
embedding and choose the class with the highest similarity
score to the node feature:

argmaxn cos(f
2D3D
o,i , tn). (5)

Relationship prediction. Following the prediction of the
node classes in an open-vocabulary manner, the second step
predicts relationships informed by the object predictions
from the first step.

Contrastive vision-language models such as CLIP [33]
have been shown to have a poor compositional understand-
ing of the world [16, 29, 50, 52] resulting in limited accuracy
when used for tasks such as relationship prediction. Thus,
querying predicates for the scene graph edges in a similar
manner as we have done for our node prediction will yield
poor results. We provide experimental results to this hypoth-
esis in the Tab. 1.
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To solve this issue we exploit generative VLMs, which
are grounded via a specific task. These models usually pro-
duce outputs that perform better on VQA benchmarks or
benchmarks where it is required to have compositional rea-
soning [7, 23, 24]. However, a big drawback of deploying
a generative approach is that restricting the output to a de-
sired answer is not straightforward. To this end, Instruct-
BLIP [7] is uniquely designed to give more output con-
trol using prompting. The InstructBLIP model consists of
a vision transformer (ViT) encoder followed by a Qformer,
which receives context from learnable tokens, a user prompt
and the output of the ViT. The Qformer fuses and projects
this information to the token space of a pre-trained LLM
which is again conditioned on a user prompt.

We change the input to the Qformer such that instead
of receiving the vision features from the ViT, we provide
our 2D-3D distilled ensemble features from Sec. 3.3 coming
from our graph neural network. To infer an accurate rela-
tionship grounded for a specific subject-object relation, we
use the object class predictions from the first step to refine a
template query to only output a relationship description for
these two objects.

The output of the scene-conditioned Qformer is fed into
the LLM which is prompted to output a relationship de-
scription for the subject-object pair in the graph, given the
same conditioned query. This process is done in parallel for
all edges in the scene graph to predict relationships for all
subject-object pairs. The final result is an open-vocabulary
3D scene graph with open-vocabulary objects as well as
open-vocabulary relationships.

4. Experiments

4.1. Experimental Setup

Datasets. The choice of training data is generally fixed for
other 3D scene graph methods. The 3DSSG dataset [44] is
at the time of writing this paper, the only dataset that pro-
vides semantic scene graph labels aligned with a 3D scene.
This forces other methods [21, 44, 47, 55] to train and test
on this rather small 3D dataset. In contrast, our method can
be trained independently from scene graph labels on a 3D
dataset that provides a 3D representation with posed 2D im-
ages, including their depth. While 3DSSG provides high-
quality 3D point clouds and scene graphs, the provided por-
trait images have a low FOV, leading to a suboptimal 2D fea-
ture extraction. Therefore, we choose ScanNet [6], a similar
indoor dataset, which provides image frames with acceptable
FOVs and high-quality point clouds. However, since 3DSSG
is the only dataset to provide ground truth scene graph la-
bels, we evaluate our distilled model quantitatively on it.

Baseline methods. Given the challenging nature of open-
vocabulary 3D scene graph prediction, our method is the first

true open-vocabulary 3D scene graph method, that not only
models open-vocabulary objects, but also open-vocabulary
relationships from 3D point clouds. Therefore, no compa-
rable method exists. As the first open-vocabulary 3D scene
graph prediction method we compare against the first closed-
vocabulary semantic 3D scene graph estimation method
3DSSG [44]. Further we compare against the current state-
of-the-art [22, 47]. Additionally, we devise some open-
vocabulary baseline methods for a fair comparison of our
method. The first baseline is a naive CLIP-based approach,
where we try to predict relationships directly with CLIP
[33]. The second baseline we propose is a CLIP-based al-
ternative to our method, where we predict objects and pred-
icates in a 2-step manner directly from 2D images, querying
first objects and then relationships using CLIP. This baseline
is meant to highlight the advantage of using InstructBLIP for
relationship prediction. We also evaluate the performance of
NegCLIP [52] which is supposed to have improved compo-
sitional understanding. The third open-vocabulary baseline
is similar to the concurrent work ConceptGraphs [13] and
utilizes a caption-based approach directly from 2D images.
We use OpenSeg [11] and BLIPv2 [24] to predict objects
and their image captions, from which we extract objects and
relationships for evaluation.

For further insights into our devised baselines, the reader
is referred to our supplementary work.

Metrics. Designing metrics to quantitatively evaluate the
capabilities of open-vocabulary methods is a current prob-
lem. So far, the best approach remains evaluating an open-
vocabulary method on closed-vocabulary metrics. In our
case, we choose the commonly used top-k recall metric
(R@k) [27] for scene graphs. Following [44, 45, 49, 51, 55],
we evaluate objects and predicates individually and relation-
ships as subject-predicate-object triplets. Additionally, we
provide a class-wise evaluation using the stricter mean recall
metric (mR@k) [5].

Label mapping. To evaluate our method on a fixed-
vocabulary benchmark, we provide object text queries from
the class label set of 3DSSG, which comprises 160 classes.
We compute the cosine similarity and choose the top-k pre-
dictions based on their cosine similarities. However, since
we predict relationships in a generative manner, we cannot
provide fixed queries for our relationship prediction. The
LLM will output the most likely and best descriptive rela-
tionship given the context as well as subject and object. To
map this to the fixed label set, we employ BERT [8], a small
language model with well-structured word embeddings. It
encodes the output of the LLM and the target relationship
labels set and computes the cosine similarity from which
we select the top-k most likely candidates. We reason that
BERT has a well-structured word embedding space and is
a good look-up approach to finding the most fitting syn-
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onyms from the 27 relationship classes from the 3DSSG
[44] dataset, which contains spatial, supportive, semantic,
and comparative relationships labels.

4.2. Closed-set 3D scene graph prediction

Comparisons with fully-supervised and zero-shot meth-
ods. In Tab. 1 we compare our new zero-shot open-
vocabulary 3D scene graph prediction approach with both
fully-supervised as well as other zero-shot baselines on the
3DSSG [44] dataset. We outperform all our supervised base-
lines on object, predicate and relationship prediction. We
demonstrate that a naive CLIP-based approach is ill-suited
for relationship prediction, but also a two-step approach sim-
ilar to our method by combining OpenSeg [11] and CLIP
[33] or even NegCLIP [52] does not yield significant im-
provements. The caption-based approach also achieves con-
siderably lower performances compared to our method. This
is likely due to the poor quality of the 2D frames within the
3DSSG dataset, which negatively affects the caption-based
approach which only uses 2D information for inference. In
contrast, our approach uses a 2D-3D ensemble, where the
distilled 3D features can compensate for the poor or missing
2D features.

Similar to other open-vocabulary approaches [31, 41],
there is a noticeable gap to the state-of-the-art fully-
supervised approaches. However, our zero-shot open-
vocabulary approach is surprisingly competitive with the
fully-supervised approach from a few years ago [44].

Impact of class occurrence. Fully-supervised methods are
heavily biased by what they observe during training. Train-
ing samples of classes that are observed in a higher fre-
quency are generally learned more effectively than rarer
classes. In literature, there are multiple ways to alleviate
this problem. Most scene graph methods [22, 44, 46] for
instance, uses a focal loss [25] to solve the problem of class
imbalance in the training set. As a zero-shot approach, our
method is less susceptible to class imbalance. To evaluate
this, we compare in Tab. 2 the mR@k recall of our first
open-vocabulary method with recent 3D scene graph meth-
ods on the most common head classes, moderately common
body classes and rare tail classes. We observe that while
fully supervised methods demonstrate impressive accuracy
on common object and predicate classes, their recall drops
drastically for rare tail classes. In contrast, our zero-shot
method reports consistent results across all classes, achiev-
ing on-par results with current fully supervised methods for
all object and predicate classes averaged and outperforming
the fully supervised methods on tail-end object classes by a
considerable margin. This demonstrates the core advantage
of our zero-shot open-vocabulary approach that it performs
robustly on a wide variety of objects and predicates.

Object Predicate Relationship

Method R@5 R@10 R@3 R@5 R@50 R@100

Fully-supervised
3DSSG [44] 0.68 0.78 0.89 0.93 0.40 0.66
SGFN [47] 0.70 0.80 0.97 0.99 0.85 0.87
SGRec3D [22] 0.80 0.87 0.97 0.99 0.89 0.91
VL-SAT [46] 0.78 0.86 0.98 0.99 0.90 0.93

Zero-shot open-vocabulary
CLIP (naive) [33] 0.35 0.42 0.09 0.19 0.02 0.04
OpenSeg [11] + CLIP [33] 0.38 0.45 0.10 0.23 0.05 0.07
OpenSeg [11] + NCLIP [52] 0.38 0.45 0.10 0.20 0.05 0.08
OpenSeg [11] + Cap. [24] 0.38 0.45 0.50 0.58 0.30 0.32
Open3DSG (Ours) 0.57 0.68 0.63 0.70 0.64 0.66

Table 1. Closed-vocabulary evaluation on 3DSSG. We com-
pare our method with both zero-shot and fully-supervised base-
lines for 3D scene graph prediction. Overall, the zero-shot ap-
proaches perform worse than the fully-supervised methods. How-
ever, Open3DSG achieves comparable results to the first supervised
3D scene graph prediction method 3DSSG.

Labels Head Body Tail All

Objects R@5

3DSSG [44] 105 0.88 0.45 0.06 0.30
SGRec3D [22] 105 0.92 0.78 0.24 0.45
VL-SAT [46] 105 0.92 0.73 0.31 0.46

Open3DSG 0 0.60 0.50 0.42 0.45

Predicates R@3

3DSSG [44] 105 0.94 0.83 0.41 0.57
SGRec3D [22] 105 0.97 0.96 0.65 0.69
VL-SAT [46] 105 0.99 0.94 0.58 0.75

Open3DSG 0 0.38 0.29 0.57 0.37

Table 2. Frequency based class evaluation. Here we compare the
prediction performances for objects and predicates based on their
frequency in the training set. Even though the fully-supervised
approaches are trained specifically on this dataset, we can handle
the less-common / long-tail classes much better.

4.3. Ablation studies

Is our knowledge distillation effective? In the top part of
Tab. 3 we ablate the effectiveness of the feature distillation
from the VLMs to our graph neural network. We compare
results on 3DSSG [44] for our distilled 2D-3D ensemble
method with a distilled 3D only method when posed im-
ages are not available and with a 2D only method where we
directly use the 2D VLM features for 3D scene graph pre-
diction. While the 2D method already shows good results,
only when combining 2D and 3D features we reach the best
performance of object and predicate prediction.
What if we have ground truth objects? Our relationship
prediction using the LLM from InstructBLIP is conditioned
on the queried objects from the OpenSeg embedding. There-
fore, the correctness of the relationship prediction is influ-
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Figure 4. Qualitative open-vocabulary 3D scene graph predictions. We show the top-1 predictions on ScanNet [6] from Open3DSG. The
nodes are queried using the 3DSSG [44] 160 class label set, while the edges are generated directly from the graph-conditioned LLM.

enced by the accuracy of the object querying. To evaluate
both modules decoupled from each other, we provide the
ground truth labels to InstructBLIP from which the LLM
predicts the relationship. In the bottom part of Tab. 3, we
observe that this has only a minimal impact, indicating that
our method is robust towards slightly incorrectly predicted
object nodes.
What if we use CLIP instead of OpenSeg? We choose
OpenSeg [11] as our 2D object feature extractor. A popular
alternative is CLIP. In the bottom part of Tab. 3 we show
experimentally that using OpenSeg as the 2D object feature
extractor yields better results compared to CLIP.
What if we learn predicates supervised? While the
3DSSG [44] contains over 160 annotated object classes, the
number of categorized predicates is below 50 and most re-
lated works only evaluate on 27 or fewer distinct predicates
[22, 44, 47, 55]. Therefore, given the comparably small vo-
cabulary of predicates, we choose to fine-tune our model on
27 fixed predicate classes with only a few labels per class
(˜100). In the bottom part of Tab. 3, we observe that fine-
tuning on 3DSSG improves predicate prediction with our
model. Additionally, we observe synergy effects for object
prediction. Hence, our VLM distillation training can also be
an effective pre-training strategy when labels are scarce.

4.4. Qualitative Results

In Fig. 4, we provide qualitative results from our open-
vocabulary 3D scene graph prediction approach for two dif-
ferent scenes from ScanNet [6]. We show the top-1 predic-
tion for nodes and edges but filter edges where objects are
further apart than 0.5m. The predicted object class labels
are overall predicted correct and very specific, such as mi-
crowave or dining chair. The relationships between objects
are generally correct as well with a diverse set of predicates
such as next to, attached to, under, above. The advantages of
our open-vocabulary prediction are especially good to see
for the predictions such as ”tv mounted on wall” or ”mi-
crowave build into kitchen cabinet”.

4.5. Limitations

The experiments conducted in this paper demonstrate the

Object Predicate

R@5 mR@5 R@3 mR@3

Open3DSG 2D 0.37 0.37 0.67 0.19
Open3DSG 3D 0.46 0.25 0.60 0.33
Open3DSG 2D-3D 0.57 0.45 0.63 0.37

Open3DSG 2D-3D w/ CLIP 0.48 0.32 0.59 0.32
Open3DSG 2D-3D + GT Objs 1.00 1.00 0.64 0.38
Open3DSG 2D-3D + Supv. Rels. 0.59 0.46 0.76 0.44

Table 3. Ablation study. 3D scene graph prediction with different
input modalities, object VLM, privileged ground-truth information
and supervised fine-tuning.

potential and advantages of open-vocabulary 3D scene graph
methods. We observe that while predicting open-vocabulary
objects shows great potential, predicting open-vocabulary
relationships remains a challenging problem.

Furthermore, the evaluation setup for systematically eval-
uating open-vocabulary 3D scene graph methods still re-
mains an open problem. While closed-vocabulary evalua-
tions are valuable, they cannot highlight the huge potential
of open-vocabulary methods such as ours.

5. Conclusion
This paper introduces a new approach to learning seman-
tic 3D scene graphs in an open-vocabulary manner from
3D point cloud data. Our method distills 2D VLMs into
a 3D graph neural network thus creating a graph-based
and language-aligned scene representation which can be
queried and prompted to create an explicit open-vocabulary
scene graph. To tackle the problem of lacking compositional
knowledge in traditional VLMs, we split the relationship
prediction into two steps, where we first query objects in
a scene using CLIP and prompt relationships in a second
step from the inferred objects using an LLM decoder. Our
proposed approach shows promising results when evalu-
ated on a closed-set benchmark and qualitative results con-
firm the open-vocabulary nature of our method. In future
work, we see potential in improving relationship prediction
even further to achieve even better and more reliable open-
vocabulary 3D scene graph predictions that can be useful for
many downstream tasks.
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Open3DSG: Open-Vocabulary 3D Scene Graphs from Point Clouds
with Queryable Objects and Open-Set Relationships

Supplementary Material

In this supplementary material, we first provide addi-
tional implementation details in Sec. A. Next, we detail our
design choices for our open-vocabulary 3D scene graph ap-
proach in Sec. B. In Sec. C we provide additional details on
our proposed baselines. Next, we highlight the improved se-
mantic understanding of our open-vocabulary method com-
pared to fully-supervised methods in Sec. D and demonstrate
the advantages with long-distance relationships compared
to 2D-only open-vocabulary methods in Sec. E. We show
unique applications of how our open-vocabulary 3D scene
graphs can be used in Sec. F. Finally, we provide more qual-
itative results in Sec. G.

A. Implementation details
For our 3D graph backbone, we extract features from the
point cloud using two PointNets that compute an initial
1024-dimensional feature vector for each node and edge.
The graph features are refined using five layers of graph
convolutions with message passing inspired by [44] and a
hidden dimension of 2048. Finally, the node features are
projected into the 768-dimensional CLIP space using a
5-layer MLP with ReLU activations and batch norm. The
edge features are concatenated with the positional encoding
from the BLIP-ViT and projected into the 1408-dimensional
BLIP feature space using a 5-layer transformer architecture.
The model is trained for 50 epochs using the Adam opti-
mizer with weight decay, a learning rate of 5e-4, and a cyclic
cosine-annealing learning rate scheduler. We use a batch size
of 6 on a single Nvidia A100 GPU with mixed-precision.

During inference time, we use the pre-trained CLIP ViT-
L/14@336 text encoder to encode the object queries and a
pre-trained Vicuna 7B LLM model from Hugging Face 1

for predicate prediction. To query the CLIP text encoder we
use object classes from the 160 class label set from 3DSSG
[44], but we are not limited to those and can also query other
arbitrary object classes or even concepts rather than dis-
crete classes. To prompt the LLM we design an open-ended
prompt to get the most open-vocabulary response: “Describe
the relationship between [object1] and [object2]?”. Here ob-
ject1 and object2 are the object classes queried in the first
step by CLIP. It is also possible to ask whether a specific re-
lationship exists. However, we observe that providing more
than five options confuses the LLM. To map the LLM pre-
dictions to the closed-vocabulary benchmark label set, we
use the bert-base-uncased model from Hugging Face 2 with

1https://huggingface.co/Salesforce/instructblip-vicuna-7b
2https://huggingface.co/bert-base-uncased

768-dimensional feature embeddings.

B. Design choices
To succeed with distilling an open-vocabulary 3D scene
graph method from 2D foundation models, we first study
which model and which dataset is best suited for the distil-
lation.

Compositionality pilot-study. Our approach highly de-
pends on the knowledge encoded in the 2D vision-
language model. However, Yuksekgonul et al. [52] and oth-
ers [50] have demonstrated that current contrastive pre-
trained vision-language models behave like bag-of-words
models and have little understanding of compositionality. To
evaluate whether a contrastively pre-trained VLM is suited
for the distillation into our 3D scene graph model, we per-
form a pilot-study on a subset of the VL-Checklist Relation
[52] benchmark. Differently from the evaluations conducted
in [52], we do not evaluate whether the VLM can differ-
entiate between the correct and incorrect relationship de-
scription but provide a set of queries where the VLM has to
choose the most likely. This makes the task much harder for
the VLM as the likelihood that the VLM picks the correct
caption among the incorrect captions by random chance is
much smaller. In the evaluation, we query the VLM using
the query template “A relationship of a [subject] is [predi-
cate] a [object]”, where subject and object are fixed to the
ground truth to solely evaluate the relationship understand-
ing of the VLM. We report the top-1, top-2, and top-5 recall
scores denoting whether the correct predicate was in the top-
k highest similarity scores.

top-1 top-3 top-5

Random chance 0.04 0.12 0.19
CLIP (ViT-L/14) 0.12 0.30 0.42
NegCLIP 0.14 0.35 0.48
SigLIP 0.11 0.27 0.37

Table A. VL-Checklist Relation. We evaluate the embedded rela-
tionship knowledge of the current state of contrastively pre-trained
VLMs on an adapted benchmark from [52]. Results are reported for
whether the VLM scores the correct predicate in the top-1, top-3,
or top-5.

As expected, while CLIP [33], NegCLIP [52], and SigLIP
[54] are exceptional zero-shot classifiers of objects, they
cannot model inter-object relationships. The experimental
evidence on a small controlled evaluation benchmark indi-
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3RScan / 3DSSG

ScanNet

Figure A. ScanNet vs. 3RScan. We choose ScanNet over 3RScan
/ 3DSSG as a distillation dataset since the FOV of each frame is
generally higher and more objects are visible in one frame.

cates that CLIP-like contrastively pre-trained VLMs do not
have enough compositional knowledge about relationships
that can be distilled into a 3D network. Therefore, in this
paper, we choose to go beyond CLIP-like VLMs for rela-
tionship prediction and leverage a BLIP [7] vision encoder
that can be projected into the token space of an LLM via a
Qformer to predict relationships.

Distillation dataset. We choose to distill features on Scan-
Net [6] rather than 3RScan / 3DSSG [44], which we eval-
uate on. The reason for this is highlighted in Fig. A. Both
datasets are indoor datasets depicting similar scenes. While
ScanNet was recorded with an iPad with an attached depth
sensor in landscape mode, 3RScan / 3DSSG was recorded
with a Google Tango in portrait mode. The different record-
ing setups result in entirely different vertical and horizontal
field-of-views. We reason that to extract meaningful visual
features representing the relationships between two objects,
it is necessary that two objects are nearly fully visible in
the same frame. This is rarely the case in 3RScan with its
portrait setup. Therefore, we choose to use ScanNet for dis-
tillation as more of its frames depict more than one object.

C. Baselines
In addition to proposing a novel open-vocabulary 3D scene
graph prediction method, we also propose several baselines.
Here we provide further details on these baselines.

CLIP (naive). The most naive approach is to predict objects
and predicates independently from each other directly using
CLIP [33]. We select images for each object instance as
well as images where a pair of objects is shown similar to
the process in Sec. 3.2 and encode them using the CLIP
image encoder. Then we build a fully-connected graph from
the encoded features and query the nodes with object class
labels and the edges with predicate class labels.

CLIP & NegCLIP. A more sophisticated approach using
CLIP [33] or NegCLIP [52] is more similar to our two-step
approach. The difference is shown in Fig. B. Here we also
first build a fully-connected feature graph and predict object
classes by querying the class of each node. Then we use
the predicted objects as context to query full relationships
in a second step using CLIP. Using the predicted objects as
context improves results compared to the naive approach,
nevertheless, the results fall short of our LLM approach due
to the limited compositional knowledge of both CLIP and
NegCLIP.

D. Improved semantics
While Tab. 1 in the main paper shows that our proposed
open-vocabulary 3D scene graph method achieves overall
worse performance compared to the current SOTA fully-
supervised methods, Tab. 2 demonstrates the advantages
of an open-vocabulary method, where we outperform the
fully-supervised baselines on long-tail distribution classes.
To give further insights into the benefits of our proposed
open-vocabulary method, we provide scores on selected ob-
ject and predicate classes in Tab. B. It shows that our open-

3DSSG SGRec3D Open3DSG

Objects R@5
cabinet / kitchen cabinet 0.39 / 0.33 0.67 / 0.87 0.39 / 0.94
chair / dining chair 0.98 / 0.00 0.94 / 0.00 0.48 / 1.00
table / bedside table 0.60 / 0.00 0.90 / 0.25 0.37 / 1.00

Predicates R@3
standing on 0.73 0.95 0.86
covering 0.00 0.00 0.24
belonging to 0.48 0.65 0.91

Table B. Semantic awareness. While fully-supervised methods
such as 3DSSG [44] and SGRec3D [22] produce overall good re-
sults, their performance on difficult, rare, and semantically descrip-
tive classes remains low. In contrast our open-vocabulary approach
excels at semantically descriptive classes.
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(b) Discriminative: CLIP-based Relationships (Baseline)(a) Generative: LLM-based Relationships (Ours)

[object1] standing on [object2]
[object1] lying on [object2],
[object1] next to [object2],

Figure B. Relationship prediction comparison. We compare our generative relationship prediction approach using a prompted LLM (a),
with a CLIP-based querying baseline (b) from Tab. 1. Due to the limited compositional knowledge of CLIP-like models, a discriminative
approach where predicates can be directly queried performs much worse than a generative LLM-based approach.

vocabulary method outperforms the fully-supervised meth-
ods on very specific and semantically descriptive classes.
For instance, for objects our network is better at differenti-
ating a chair from a dining chair or a table from a bedside
table. At the same time, fully-supervised methods, likely
due to class imbalance during training, often only predict
a generic class rather than the most specific class possible.
This is similar for predicates. While the fully-supervised
methods generally perform well on all predicates, highly
semantic and specific predicates such as covering or belong-
ing to are predicted less accurately. In contrast, our open-
vocabulary method performs particularly well on semantic
predicates such as standing on, covering or belonging to.

E. Long distance relationships

In Tab. 3, we provide an ablation for 3D scene graph pre-
diction solely with 2D vision-language models. Only using
2D data performs worse than our learned 2D-3D ensemble
approach.

While a prediction using 2D images is possible, a sig-
nificant disadvantage of relying only on 2D data is that to
predict a relationship between two objects, those two objects
must be visible together in at least one frame. In contrast, our
method does not have this limitation since it processes the
3D point cloud and can predict a relationship between two
objects of arbitrary distance in a point cloud. Fig. C shows
such two far-apart objects that are not close enough to appear
in a shared frame, but still have a meaningful relationship
detected by our method.

Figure C. Long distance relationships. In contrast to a 2D-only
relationship prediction approach, which requires two objects to be
visible in an image together, our 3D approach can predict relation-
ships for two arbitrary far objects.
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Figure D. Application: Object localization via triplet descrip-
tion. Using our open-vocabulary approach, we can localize object
instances in the 3D point cloud given a relationship description of
the object instance.

F. Applications

F.1. 3D Triplet localization

3D scene graphs are useful for various downstream com-
puter vision or robotics tasks. In Fig. D we demonstrate
one of those use cases uniquely suited to our language-
aligned open-vocabulary 3D scene graphs. First, a 3D scene
is encoded as an open-vocabulary 3D scene graph using our
method. This representation is now queryable and prompt-
able with an open vocabulary, making it a versatile tool for
various scene understanding tasks. We demonstrate its use-
fulness for object localization in a 3D point cloud. Unlike
other object localization methods [31], our goal is not to lo-
calize all objects of the same class but a specific instance
that fits a relationship description. We encode a relationship
description using the CLIP [33] and BERT [8] language en-
coders to generate a triplet feature representing the relation-
ship. Then, we perform a subgraph-matching based on the
cosine similarity of each triplet in the encoded scene graph
with our target triplet feature. We select the triplet with the
highest similarity score and reference it in the point cloud
using the scene graph-point cloud alignment.

F.2. Material prediction

We present another application of zero-shot object at-
tribute/material prediction, evaluated quantitatively in
Fig. E. The material prediction can be performed without
further training with the same querying strategy described
in Sec. 3.4. Predicting attributes for each object further
enriches the predicted 3D scene graph. We provide a
top-1 accuracy metric comparison with OpenScene [31],
a point cloud-based open-vocabulary method, on 3DSSG.
Open3DSG outperforms OpenScene for most materials and
also achieves a higher average accuracy for all classes. Note
however that OpenScene predicts the material per point
while we predict the material per instance.

Figure E. Application: Material prediction. Using our open-
vocabulary approach, we predict the material of objects without
explicit training. We compare against OpenScene [31].

Figure F. Application: Reasoning over object affordances. Using
our open-vocabulary approach, we reason about the affordances of
objects by for instance prompting the LLM to output whether an
object can be lifted from the other.

F.3. Reasoning over object affordances

A further application is the reasoning over scene-specific
affordances using Open3DSG. Given the open-vocabulary
representation computed by our method, we can prompt the
LLM to predict affordances between objects. These affor-
dances are grounded by the processed scene. In Fig. F, we
demonstrate how Open3DSG can reason over which objects
can be picked up by a human by prompting the LLM ”Can
you lift [x] from [y]”. Our model correctly predicts that the
pillows can be picked up from the bed while the bed would
be too heavily to lift from the carpet.

G. Additional 3D scene graph predictions

In Fig. G, we provide additional 3D scene graph predic-
tions on ScanNet [6]. Relationships for objects that are fur-
ther apart than 0.5m are pruned for clarity in the visualiza-
tion. Overall, the 3D scene graph predictions are correct and
the advantages of an open-vocabulary method become es-
pecially apparent for rare and specific object classes such
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as computer desk or precise relationship descriptions such
as tv mounted on wall. But our open-vocabulary approach
still has several limitations, such as overall low diversity in
the predicted relationships. However, this limitation is not
unique to our open-vocabulary method but also remains an
issue with the current state of fully-supervised methods.

Nonetheless, our approach also has unique limitations,
such as LLM-typical hallucinations like computer desk (key-
board) connected via USB to monitor or imperfect geometric
understanding where two monitors are both predicted to be
to the left of each other.
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Figure G. Qualitative open-vocabulary 3D scene graph predictions. Left: Colored point cloud input; Middle: Class-agnostic mask; Right:
Predicted open-vocabulary 3D scene graph.
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