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Abstract We present an image-based approach to integrate state-of-the-art scientific visualization into
virtual reality (VR) environments: the mint visualization/VR inter-operation system. We enable the inte-
gration of visualization algorithms from within their software frameworks directly into VR without the need
to explicitly port visualization implementations to the underlying VR framework—thus retaining their
capabilities, specializations, and optimizations. Consequently, our approach also facilitates enriching VR-
based scientific data exploration with established or novel VR immersion and interaction techniques
available in VR authoring tools. The separation of concerns enables researchers and users in different
domains, like virtual immersive environments, immersive analytics, and scientific visualization, to inde-
pendently work with existing software suitable for their domain while being able to interface with one
another easily. We present our system architecture and inter-operation protocol (mint), an example of a
collaborative VR environment implemented in the Unity engine (VRAUKE), as well as the integration of
the protocol for the visualization frameworks Inviwo, MegaMol, and ParaView. Our implementation is
publicly available as open-source software.

Keywords Scientific visualization framework - Virtual reality environment - Texture sharing -
Inter-process communication - Immersive analytics

1 Introduction

Today, the domains of scientific visualization software and virtual reality (VR) applications mainly operate
on different levels of abstraction and have different goals. The interconnection of both enables immersive
data analysis, which is researched in immersive analytics (Chandler et al. 2015; Fonnet and Prié 2021; Ens
et al. 2021). This interconnection is desirable as it enables exploration of a broader design space with use
cases in, e.g., collaborative exploration of data (Prodromou et al. 2020), educational applications (Kauf-
mann and Schmalstieg 2002), or even artistic approaches to visualized data (Keefe et al. 2008). Although, at
first glance, the interests of the visualization and VR domains seem to overlap with regard to maximized
performance, their thresholds for interactivity are quite different. For example, interactivity in visualization
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Fig. 1 Our system mint provides a generic way to integrate desktop-based scientific visualization frameworks like MegaMol
(left) into easy-to-use collaborative VR environments, such as our VRAUKE system (right). Both scientific visualizations and
VR environments can be developed in their respective software ecosystems using abstractions best suitable for their domain. In
this example, the visualizations show a LAMMPS (Thompson et al. 2022) peridynamics simulation of exertion of force on a
porous ceramic (dataset size 146 MB). Particles are colored by damage (yellow to red), measured in the number of broken
bonds to neighboring particles. Note the clusters of cracks at the center bottom in VR. Ambient occlusion is applied for better
visibility of the spatial structures. Dataset courtesy of Vinzenz Guski

could mean as low as ten frames per second (FPS), whereas current VR research recommends targeting 120
FPS or more if possible (Wang et al. 2023).

Visualization researchers want to ensure that their algorithms scale to relevant data sizes and enable
users to gain insights from their data by using appropriate and, sometimes, novel representations.
Abstractions are added when necessary, e.g., to address perceptual limitations (clutter) and performance
issues (interactivity). To optimize for these needs, scientific visualization software often relies on low-level
software environments that make use of hardware acceleration, built on C++ and OpenGL (Humphrey
et al. 1996; Bruckner and Groller 2005; Hanwell et al. 2015) or similar Application Programming Interfaces
(APIs) like CUDA or Vulkan. In contrast, VR research is predominantly characterized by topics related to
the human user, such as perception, immersion, presence, and interaction. The goal in this field of research is
to create an immersive, user-centered experience that users can navigate and interact with in a natural way,
often comparable to physical reality while providing an increased richness compared to a 2D display. In
turn, the prevalent software frameworks (or software ecosystems) in these two domains make different,
sometimes opposing, choices regarding their focused user groups, use cases, goals, domain-specific meta-
phors and abstractions, and optimizations.

To bridge this gap and combine the benefits of scientific visualization frameworks with interactive VR
environments, we propose mint (minimal interop), a software framework for inter-process rendering. Using
a generic interface, mint loosely couples systems that rely on low-level programming, such as existing
visualization frameworks, with systems that offer rich functionality and customizability at a higher level of
abstraction, e.g., VR frameworks or game engines. Please note that we use the terms “VR framework,” “VR
authoring tool,” and “game engine” interchangeably in this manuscript. We achieve loose coupling by
integrating the rendered images of scientific visualizations into VR, with only little overhead with regard to
both performance and implementation effort. We further present an example of a VR environment that
receives and integrates these rendered visualizations, VRAUKE (Visualization Renderer-Augmented Unity
Kolab Environment). VRAUKE showcases a laboratory-like setting on top of the Unity engine that
implements intuitive, hands-on interaction and collaboration features for exploring scientific datasets
(Fig. 1).

Together, mint and VRAUKE combine the rapid prototyping capabilities of VR authoring tools and the
advanced visualization algorithms of specialized visualization frameworks to facilitate scientific data
analysis in VR. Due to the generic and loose coupling of the visualization and VR environments, our system
is easier to maintain, more adaptable, and more stable than integrated solutions. Furthermore, it enables
visualization researchers and human-computer interaction (HCI) researchers to use the appropriate tools to
tackle the challenges in their field (Jonsson et al. 2019). Our evaluation of the resulting system shows that
the interconnection of software systems from both domains requires reasonable integration effort, the
resulting VR experience is usable and customizable, both for novice users and domain experts, while
introducing inter-processing rendering overhead (lag) within acceptable bounds.

In summary, the contributions of this paper are:
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1. mint, a system architecture that interconnects visualization frameworks and VR environments with little
overhead,

2. VRAUKE, an example of a VR environment implementation as a feasibility study that showcases
scenarios for which mint can be used,

3. an evaluation of the introduced rendering overhead, quantified as the lag between visualization
generation and its presentation in VR, and

4. a discussion of the effort required to enable VR for existing visualization software using mint.

We open-source the mint and VRAUKE codes at https://github.com/UniStuttgart-VISUS/MWK-mint.

2 Related work

VR has been leveraged for analyzing immersive scientific data in different domains, such as math educa-
tion (Kaufmann and Schmalstieg 2002), geoscience (Kreylos et al. 2006), medical data analysis (Egger
et al. 2017; Wheeler et al. 2018; Prodromou et al. 2020), and chemical simulations (Garcia-Hernandez and
Kranzlmiiller 2019). In a broader context, there is a trend toward combining VR with visualization and
visual analytics to arrive at immersive analytics (Marriott et al. 2018; Chandler et al. 2015; Fonnet and Prié
2021; Ens et al. 2021) and integrating interactive visualization in AR for situated analytics (Fleck et al.
2022).

2.1 Combining VR and visualization software

In this paper, we focus specifically on linking scientific visualization and VR. Approaches to integrating
both usually implement either of the domains directly in a software framework of the other. Visualization
algorithms are either ported to game engines that already provide VR integration (Doutreligne et al. 2014,
User “mlavik1l” on GitHub, 2023), or low-level VR hardware support (like OpenVR, OpenXR) is added to
visualization frameworks (O’Leary et al. 2017; Shetty et al. 2011; Egger et al. 2017; Cordeil et al. 2019;
Garcia-Hernandez and Kranzlmiiller 2019; Prodromou et al. 2020; Giinther et al. 2019). While this tight
integration provides the optimal environment for one of the two domains, the other is generally not fully
supported, less flexible, or not as mature.

An effective decoupling of VR and visualization frame rates is achieved by Shaw et al. (1993), in the
form of the Decoupled Simulation Model (DSM) system architecture for VR rendering across multiple
processes and machines connected via a network, along with the MR Toolkit as a framework to develop VR
applications. ISVAS-VR by Haase (1996) is a symbiosis of a full-featured VR system and scientific visu-
alization framework, both running as separate processes on the same machine using Unix pipes and shared
memory for inter-process communication. Haase distinguishes five classes of possible integration/inter-
connection between VR and visualization systems, of which the loose coupling (via messages) of mature VR
and visualization systems is the most capable one in terms of available features. VIVRE (Boyd et al.
1999a, b) provides a similar coupling of VR and visualization systems, but the visualization system passes
geometry primitives to the coupled virtual environment for rendering. Similarly, Fuhrmann et al. (1997)
implement the Studierstube AR system as separate display and visualization processes, where the latter
provides updated geometry data based on modified visualization parameters. Since both approaches are
geometry-based, they are limited in their generality with regard to rendering techniques. Our system falls
into the loose coupling categorization by Haase, but since it is image-based instead of geometry-based, it is
generic across visualization frameworks and techniques.

Recent work by Wheeler et al. (2018) and Prodromou et al. (2020) integrates the Visualization Toolkit
(VTK) (Schroeder et al. 2006) with the Unity engine by sharing an OpenGL context between Unity and
VTK. This is done by wrapping VTK in a Unity native plugin, effectively executing VTK from inside Unity
and rendering into the Unity framebuffer. UnityMol (Doutreligne et al. 2014), DXR (Sicat et al. 2019), and
the Immersive Analytics Toolkit (IATK) (Cordeil et al. 2019) implement algorithms for molecular and data
visualization directly in the Unity engine, citing it as an advanced but also accessible authoring tool for
interactive applications. Our work shares part of the intention behind RagRug (Fleck et al. 2022) in the
sense that we aim to have VR and interaction as accessible as possible, but we still want to keep the low-
level control that visualization developers require. Technically, the aforementioned methods that integrate
visualizations into VR place the visualization computation inside the main render loop of the VR engine.
The main drawback of this approach is that visualization rendering has to render at a performance level that
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does not compromise the targeted FPS in VR environments (Wang et al. 2023). Otherwise, the VR render
loop will stall, and a user in the VR session may experience discomfort, disorientation, or sickness (Stauffert
et al. 2020; Liu and Heer 2014). Further, porting existing visualization implementations to VR frameworks
may be time-consuming and error-prone. We want to enable researchers to use available software tools
directly and thus focus on actual research questions and investigations they are interested in.

2.2 OpenGL interception and manipulation

Intercepting and manipulating the OpenGL command stream by replacing dynamically loaded libraries has
been demonstrated (Stegmaier et al. 2002; Mohr and Gleicher 2002) as a feasible approach to extend use
cases of existing OpenGL applications where the source code is not available for modification. This
technique intercepts all OpenGL API calls, modifies data or parameters where necessary, and passes the
result to the original OpenGL driver provided by the graphics hardware vendor. Initially, this method was
used to apply stylized rendering techniques to the original rendering (Mohr and Gleicher 2002), but was
later extended to connect existing OpenGL applications to VR environments for MATLAB visualizations
and traffic simulations (Zielinski et al. 2013, 2014; Donatiello et al. 2021), as well as for distributed
rendering over the network and on tiled displays (Humphreys et al. 2001; Stegmaier et al. 2002; Marino
et al. 2007; Doerr and Kuester 2011). Commercial products like TechViz' (Verhille et al. 2014) and
moreViz> based on this principle target industrial and engineering use cases such as design review of
Computer Aided Design (CAD) data in VR.

However, such OpenGL interception techniques need to rely on predefined rendering semantics, e.g.,
giMatrixMode(GL_PROJECTION) in OpenGL immediate mode, to locate relevant data in the command
stream. In contrast, modern Core Profile OpenGL is designed to give the graphics programmer more
freedom over the semantics of their rendering data. For example, scene camera parameters and resulting
matrices may be constructed from uniform (generic) shader input parameters entirely on the graphics
processing unit (GPU) during shader program execution. Similarly, triangle geometry used for rendering
may be constructed by geometry, tessellation, or even compute shaders and dispatched for rendering
indirectly, all during shader execution on the GPU.” Such features allow for maximizing GPU resource- and
compute utilization, leading to better performance and scalability. However, it may be hard or even
impossible for an intercepting OpenGL driver to track information like camera state to emulate stereo
rendering for a VR environment. Furthermore, visualization software may rely on integrating other hard-
ware acceleration APIs, like CUDA or OptiX, which may be harder to intercept and emulate but play an
important role in realizing scalable visualization algorithms (Richer et al. 2022).

2.3 Scientific visualization frameworks

Scientific visualization aims to transform input data, i.e., a dataset stemming from measurements or sim-
ulations, to output in the form of images. Visualization frameworks can have a range of use cases, such as
domain-specific applications (Grottel et al. 2015; Gralka et al. 2019; Doutreligne et al. 2014; Bruckner and
Groller 2005; Jonsson et al. 2019), large data and distributed computation support (Childs et al. 2005;
Moreland et al. 2016; Wald et al. 2017; Giinther et al. 2019), and generic visualization APIs (Bostock and
Heer 2009; Ahrens et al. 2005; Schroeder et al. 2006; Cordeil et al. 2019).

In this work, we focus on scientific visualization systems that run interactively on desktop machines.
Such systems resort to hardware acceleration to scale to large datasets. They commonly employ a GPU via
OpenGL (Hanwell et al. 2015; Bruckner and Groller 2005; Grottel et al. 2015; Jonsson et al. 2019), or use
parallelism and low-level primitives on CPUs (Wald et al. 2017) and dedicated hardware accelera-
tors (Moreland et al. 2016). Additionally, they take advantage of acceleration data structures tailored to the
properties of the rendered datasets (Wald et al. 2015; Gupta et al. 2023). The common theme for these
systems is that the design and implementation of even one visualization system for a given scope of use is a
big undertaking, requiring expertise, developer resources, and time, with the goal of amortizing this
investment over a longer software life cycle (Reina et al. 2020). As new use cases arise, such as integrating
visualization frameworks into immersive environments (Shetty et al. 2011; O’Leary et al. 2017),

! https://www.techviz.net.
2 https://www.more3d.com.
3 OpenGL Indirect Rendering, https://www.khronos.org/opengl/wiki/Vertex_Rendering#Indirect_rendering.
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repurposing established software architectures that proved to work for scientific visualization may present
significant challenges. At the same time, designing and implementing a new visualization solution from the
ground up for immersive environments may be unreasonable. Therefore, we specifically aim to reduce the
effort required to extend existing solutions to support immersive use.

2.4 Impostor and remote rendering

Our approach is technically similar to a remote rendering system, where a server process provides ren-
derable primitives to a rendering client via a communication layer (Shi et al. 2012; Shi and Hsu 2015;
Mueller et al. 2018). However, in our system, the visualization and VR processes run on the same machine,
whereas remote rendering systems often distribute rendering over a network.

Our approach to integrating visualization outputs into the VR environment resembles impostor objects
textured with the visualization. Accelerating rendering performance by approximating complex geometry
with images has been proposed by Aliaga (1996) and used in VR environments by Schaufler and Stiirzlinger
(1996). Dynamically, but asynchronously, updating the image for an impostor (e.g., by the rendering
process) can save processing resources (Decoret et al. 1999) and has been used to improve rendering
performance in VR environments (Schaufler 1996; Misiak et al. 2021).

3 Bridging visualization and VR authoring tools

In the following, we first outline use cases for integrating scientific visualizations into VR environments. To
some degree, such use cases have also been covered by research in immersive analytics (Marriott et al.
2018; Chandler et al. 2015; Fonnet and Prié 2021; Ens et al. 2021). In this discussion, we focus on the
practical implications of these use cases for end-users and software developers, i.e., how the usability
paradigms and abstractions of the respective software influence the involved workflows. In comparing the
different workflows, we point out the gap between the software ecosystems in the two domains that our
system bridges.

3.1 Use cases

The use cases employ virtual environment authoring software, e.g., Unity, to create audience-tailored
experiences or augment the capabilities of existing visualization frameworks. Potential audiences, or users,
encompass a wide range of personas, e.g., children in museum exhibit contexts, the general public, domain
experts (e.g., medical professionals), or visualization experts.

3.1.1 Visualization data exploration

VR-enabled visualization offers advantages when exploring spatial data, as observed, for example, with
molecular data (Kozlikova et al. 2017), where spatial structure gives important clues about function.
Besides immersive analytics scenarios, VR exploration can also be used in science communication to non-
homogeneous audiences, both the general public and boards of experts alike. The goals in such scenarios can
be to present correct and precise visualizations to users and not to overwhelm them with the user interface
and interaction complexity. A simplified user interface (UI) compared to a desktop visualization (Ynnerman
et al. 2016) can benefit both inexperienced users and domain experts.

3.1.2 Remote collaboration

Exploring visualizations in a collaborative setting can help build insights, e.g., for collaboration of domain
scientists and data visualization experts, or even between expert and non-expert collaborators, e.g., a
medical professional wanting to explain data to a patient (McGhee et al. 2015). VR authoring tools provide
software packages for such remote and local collaboration, i.e., multiplayer gaming libraries and infras-
tructure, designed to integrate well with the engine and related workflows.
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3.1.3 Higher education

Digital models or datasets are used in higher education to illustrate facts and foster better understanding,
e.g., in medicine, engineering, or molecular biology. To gain insights related to the learning objective,
students may benefit from collectively and collaboratively exploring datasets using an accessible visual-
ization environment that gets out of the way in terms of usability and interaction, lets users focus on the data,
and at the same time is engaging and fun.

3.1.4 Exhibits

Interactive exhibits in museums employ specifically tailored hardware/software setups to provide visitors
with in-depth information on a topic. VR setups are becoming more common for such immersive exhibits.
However, real-time data exploration of complex datasets is often impossible without building specific
interactive software for this (Ynnerman et al. 2016; Ahsan et al. 2022). This is because interactivity, sto-
rytelling, scripting, and composition play significant roles in such an exhibit context. Usually, such features
are outside the focus of visualization tools. At the same time, showing real-world datasets to users is highly
desirable, but VR authoring tools rarely support the visualization of those.

3.2 Virtual (reality) environment authoring tools

Tools like Unity* or Unreal Engine’ are not just being used for developing games anymore. Instead, they are
also increasingly applied to create user-centered, interactive experiences for broad audiences, such as in use
cases discussed above, for serious games, and even training-related software (Checa and Bustillo 2020).

3.2.1 Frameworks and tools

While software development using these tools sometimes involves writing code to define details of game
logic, it usually relies on graphical editing tools. This set of features facilitates rapid prototyping and an
agile development process that leads to faster feature iterations compared to a fully programming-based
process. As such, game engines can be seen as frameworks themselves, as they help handle common
challenges in developing interactive software, e.g., scene rendering and illumination, authoring of anima-
tions, or input handling. From a software developer’s perspective, frameworks like Unity partially shift the
responsibility regarding performance and optimization toward the engine. A drawback of this is that
developers must adhere to the restrictions and abstractions the engine framework imposes and are thus
limited in their influence on technical details. However, engines also provide usability layers, e.g., by means
of graphical editing tools, that enable developers with less or no experience in low-level programming to use
optimized state-of-the-art tools for their projects, e.g., manipulating game elements using simple, visual
programming-based approaches for physics or animations. Such tools allow experts from different disci-
plines like 3D artists, user experience (UX) and user interface (UI) designers, and software developers to
work closely together by using the same feature set of a game engine. These experts base their workflow
largely on assets, modular and reusable elements created directly in the editor or imported from external
tools, e.g., graphics for a player avatar, Ul elements, or animations and transitions between them. Those
mechanisms allow experts to focus on visual design, storytelling, and user experience and to test imple-
mented changes immediately.

3.2.2 Developing VR experiences

While building VR experiences is a form of 3D software development using game engines, additional
restrictions need to be considered to ensure an acceptable experience for end-users. In VR, rendering
performance plays a central role, as degraded performance not only results in a degraded user experience
and joy of use but is known to cause physiological effects like motion sickness, disorientation, and increased
risk of falling and injury (Duzmarnska et al. 2018; Stauffert et al. 2020). Thus, game engines with VR
capabilities are designed to prioritize frame rates and may degrade rendering quality where appropriate, e.g.,

4 https://www.unity.com.
> https://www.unrealengine.com.
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using foveated rendering, where rendering in the peripheral field of vision is done at a lower resolution.
Additionally, input modalities in VR are fundamentally different from those in desktop or laptop computers,
nowadays mostly employing hand-held hardware controllers or gestural interaction. This fundamentally
changes interaction and locomotion techniques, as traditional point-and-click metaphors from desktop
computers and 2D screens are not necessarily optimal anymore.

3.3 Visualization software systems: design and goals

As discussed in Sect. 2, the visualization community has witnessed the development and deployment of
several visualization software systems. Most visualization systems are developed with a focus on desktop
performance and expert users, e.g., visualization researchers or domain experts. Consequently, optimizing
such systems for usability for casual users is often considered out of scope, resulting in a steep learning
curve for novice or inexperienced users. To somewhat alleviate this fact, many visualization systems employ
modular visual prototyping (Burnett 1999; Koenig et al. 2006) to combine building blocks. These building
blocks represent visualization primitives or algorithms, often based on a data flow metaphor (Haeberli 1988;
Upson et al. 1989) inspired by the conventional definition of the four stages of the visualization pipeli-
ne (Haber and McNabb 1990; Moreland 2013). Visualization building blocks are configurable through
parameters, or visualization properties, which define values and ranges of visual attributes, e.g., parameters
may configure internal behavior of algorithms by defining texture resolutions, camera parametrization, or
transfer functions. Since these parameters can become complex, e.g., in the case of a transfer function,
visualization system designers need to make trade-offs regarding their level of abstraction and their place in
the design of a visualization system. Further, in the data flow metaphor, system-internal data flow and
management of such parameters are decoupled from the dataset to be visualized. The actual dataset is often
orders of magnitude larger and especially changed less frequently by the user. Thus, it can be treated as
mostly static and stored in privileged memory, usually directly on the GPU. Visualization parameters
instead are meant to be manipulated in real-time by the user and thus need to be synchronized and
transported inside a visualization system accordingly.

Visualization systems also serve as prototyping environments (Grottel et al. 2015; Jonsson et al. 2019)
for research and interdisciplinary collaborations. Collaboration partners often provide datasets in custom
data formats, with individual data characteristics relevant to their own research. Visualization researchers
may need to write data readers for custom data formats by hand and from scratch so as to fit them correctly
into the system architecture and data-flow paradigms of the used visualization system and to allow for
optimal data placement and use. For example, to ensure interactive rendering performance in processing big
data that does not entirely fit into GPU memory or even system memory (RAM), one may employ on-
demand data streaming, automated level-of-detail computation, or utilization of hierarchical data structures.
As such, analysis, processing, and rendering of datasets are not only individual to different research col-
laborations but also tightly coupled with the used and developed visualization algorithms, both on a source
code level and on a conceptual level. This is in stark contrast to the aforementioned game engines, which,
from a data-processing point of view, are focused on the construction, management, processing, and ren-
dering of triangle-mesh data.

3.4 The gap

As outlined above, game engines provide authoring tools for expert users (artists, designers, game pro-
grammers) to quickly prototype and iterate ideas, aiming to optimize for a user-centered and enjoyable
experience. The agile workflow employed by such experts is enabled by the abstractions and optimizations
toward the usability of the authoring tools themselves. For example, custom 2D or 3D user interfaces for
accessibility in data exploration, features for remote collaboration in the form of engine plugins and
integration, scripting, and storytelling of engaging experiences for education, as well as composition and
presentation for exhibit setups are some of the features that are well-supported by game engines.

On the one hand, artists and designers familiar with such authoring tools are specifically trained and
experienced in implementing such user-centric and interaction-focused experiences. On the other hand,
visualization systems provide usability abstractions aimed at visualization researchers and similar expert
users in terms of visually composing visualization pipelines. However, integrating novel or experimental
hardware, such as VR output devices and controllers, supporting multi-camera rendering or collaborative
multi-user sessions, or even creating custom user interfaces for simplified data exploration by non-experts
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are rarely central in designing and implementing visualization systems. As discussed in Sect. 2, visual-
ization systems can add such features when demand arises, and visualization algorithms can also be suc-
cessfully implemented in game engines, but there are drawbacks to both approaches. We argue that
connecting mature virtual environment authoring tools and visualization frameworks on a system level is, in
many cases, a more viable option.

4 mint

This section presents core concepts, the architecture, and implementation details of mint. As outlined above,
our goal was to design a system where integrating scientific visualizations into VR environments takes little
effort while preserving and leveraging the unique capabilities of the involved software frameworks.

In the following, we consider scientific visualizations of datasets with spatial extent, such that any
dataset is enclosed by a 3D bounding box. We also assume that the VR setup consists of one head-mounted
display (HMD), requiring rendering two images for stereoscopic vision. Extending our solution to support
2D visualizations would require only a single image to be transmitted and is not discussed in detail. We
evaluate our mint implementation and integration into the MegaMol, Inviwo, and ParaView visualization
frameworks in Sect. 6.

4.1 System design

Following the considerations in Sect. 3, we want the mint system to meet the following requirements:

e R1 Preserve full capabilities (usability, prototyping, and collaboration functionalities) of VR
frameworks.

e R2 Enable integration of scientific visualizations, as provided by specialized visualization frameworks,
without re-implementing visualization algorithms.

¢ R3 Ensure loose coupling: integration of R1 and R2 should be generic and make minimal assumptions
about either software system.

The central design decisions of our system are (1) the inter-connection of the involved visualization and VR
frameworks at a process level (as in operating system process) using an inter-process communication (IPC)
mechanism for data exchange between them, (2) using the VR framework as the user-facing process
providing VR integration and user interactions, (3) leveraging visualization frameworks as rendering
backends to produce stereoscopic visualization renderings, and (4) running both processes asynchronously,
decoupling the respective rendering frame rates.

Thus, mint realizes R3 by running existing VR and visualization software solutions, each as individual,
separate operating system processes. Rendering across both processes is coordinated by an IPC mechanism
that can be integrated into existing tools with little intrusion. This supports loose coupling between the tools
and introduces minimal interference with their existing feature set. An alternative to an IPC mechanism
would be to statically or dynamically link the respective software frameworks to each other. We regard this
as too limiting, as the involved system architectures may not be designed or not easily adjusted for such a
use case (R3). For example, O’Leary et al. (2017) implement OpenGL context sharing to use VTK from
within VR environments. However, doing so exposes VIK rendering- and application logic to the VR
framework, requiring further modifications in VTK to prevent the clearing of color and depth buffers inside
VTK from leaking into the VR rendering system.

Using the VR framework as the user-facing application (VR process) naturally realizes R1. This implies
that visualizations will be integrated into the VR environment, ideally considering them simply another
asset in the VR scene. Meanwhile, existing visualization software is going to act as a producer, or renderer,
of visualizations (visualization process), realizing R2, while the VR process remotely controls, or steers,
visualization rendering and fuses the results into the VR environment. We choose an image-based mech-
anism to exchange the final visualization results. Relying on the exchange of geometry data for visualization
rendering would not be generic, as visualization frameworks may not immediately produce geometry data
for rendering, e.g., in the case of volume rendering. In addition, exchanging image data retains visualization
results exactly as they were produced by the visualization process (R2). To maintain the performance
necessary for interactive VR environments, we use zero-copy on-GPU texture memory sharing between
processes (Microsoft 2021; Gold and Subtil 2010).
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In summary, the mint system is divided into modules (mint roles): VR frameworks (steering) and
visualization frameworks (rendering). mint modules cooperate over IPC to produce stereoscopic renderings
of visualizations and integrate them seamlessly into the VR environment. As examples of how our approach
fits into existing visualization solutions, we provide mint rendering implementations for the OpenGL-based
MegaMol,® Inviwo,” and ParaView® visualization frameworks. We also present the prototypical application
VRAUKE as a user-facing VR environment integrating mint VR steering. Details regarding the setup and
reasoning for the VRAUKE design are provided in Sect. 5.

4.2 Inter-operation rendering protocol

In the following, we discuss how rendering information is dynamically exchanged via IPC between a VR
process (steering) and a visualization process (rendering) to achieve the integration of a visualization
rendering into a VR scene. Listing 1 and Listing 2 in Fig. 2 show C++ pseudo-code as a temporal sequence,
illustrating the mint inter-operation protocol, i.e., the mint API embedded in the render loops of steering and
rendering modules and the resulting data flow between them.

We choose to run the VR and visualization processes asynchronously, i.e., mint::receive IPC function
calls return the latest data available from corresponding mint::send calls, without blocking program exe-
cution by waiting for newer data to arrive. This decouples the process frame rates and ensures a responsive
VR environment at all times. By relieving the visualization process from keeping up with the frame rate
necessary for an interactive VR environment, we further reduce the potential to expose the user to effects
that induce motion sickness. Lower frame rates in a visualization framework can happen for many reasons.
For example, visualization algorithms may have difficulty scaling with dataset properties depending on
changing camera positions (Bruder et al. 2020), which can happen easily in an interactive VR setting.
However, a blocking mechanism to synchronize frame rates can be integrated into the mint backend without
impacting the existing integration in VR and visualization frameworks.

Visualization rendering phases

In the following, dataset denotes the representation of the scientific data, visualization result denotes the
resulting image of the visualization step as rendered by the visualization process, and impostor refers to a
scene object representing the dataset in the VR environment (e.g., a game object in a Unity VR scene). The
impostor object serves as the logical unit responsible for steering visualization rendering. As such, the
impostor is used to mediate spatial dataset manipulations (position, orientation (pose), and scale) in VR to
the visualization process. Further, the impostor serves as a projection surface for the visualization, i.e., the
texture containing the visualization result is used to color the box-shaped impostor geometry, which is cheap
to render in the VR scene. Figure 3a depicts the high-level architecture of the mint system and Fig. 3b the
inter-operation protocol phases and involved IPC data exchanges.

The mint inter-operation protocol achieves dataset rendering in four phases, distributing the generation
and integration of a visualization across the two involved processes:

Alignment of dataset and impostor (by both processes)
Sharing of stereo camera parameters (by VR process)
Dataset rendering (by visualization process)
Rendering of impostor (by VR process)

-

We outline the important details and semantics of the four phases in the following in terms of OpenGL and
Unity terminology.

In phase 1, a common coordinate system for visualization rendering is established between the VR and
visualization processes using the bounding box extents of the dataset. The goal is to provide the user with a
dataset representation in VR that they can interact with, and that also acts as a projection surface for the
visualization result in VR. The impostor is set up such that its Unity rendering mesh and physics collider
mirror the axis-aligned bounding box of the dataset in model space. To ensure easy interaction, we rescale
the impostor object to fit within a I m? volume in the VR scene. This scale presents a sufficient overview of
the data and is a convenient starting point for interaction.

S https://megamol.org.
7 https://inviwo.org.
8 https://www.paraview.org.
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auto bbox = data_set.bounding_box();
mint::send <BoundingBox > (bbox);
auto bbox = mint::receive<BoundingBox>();
scene.impostor.align(bbox);

while(true) { while(true) {
auto cam = scene.VR.stereo_cameral();
mint::send<StereoCamera>(cam);
auto cam = mint::receive<StereoCamera>();

auto left = render(data_set, cam.left);
auto right = render(data_set, cam.right);
mint::send<Image> (left, right);

auto vis_.image = mint::receive<Image>();

scene.impostor.set_texture(vis_image);

render(scene); // potentially another thread

Listing 1: mint steering loop Listing 2: mint rendering loop

Fig. 2 mint steering and rendering process exchanging data over mint IPC functions

I C i izati Stereo Setup Rendering
Framework V;“gg‘n"’"J
Visualization L Camera params [ GLTex @ g\
Framework 3 f L o) L
Sy e ey TN = /@ﬂ@x \\ ~I
‘Authoring bounding box 3| stereo camera stereo visualization
VR Environment d @ N @
i - g §o g @
VR Environment Alignment Shading
(a) mint system architecture (b) mint rendering data exchange protocol

Fig. 3 a The architecture of our proposed system. The visualization framework (top) and VR environment (bottom) each run
as a separate process, asynchronously exchanging rendering data via the mint inter-process communication API. Left: High-
level overview of system components. Right: Detailed architecture of the mint library and exchanged rendering information.
Communication between the processes is abstracted by mint, which internally uses the ZeroMQ (ZMQ) and Spout libraries.
b Data exchange protocol between the visualization and VR processes via mint and the resulting system state changes

In phase 2, the VR process broadcasts the camera pose for the left and right eye and camera projection
parameters specific to the HMD in use to the visualization process. To allow generic integration into visu-
alization frameworks, we reduce the potentially complex scene graph in Unity by re-framing the stereo camera
pose relative to the dataset impostor, i.e., the camera pose is expressed in the model space of the dataset/
impostor. This way, we avoid using model matrices, as scientific visualization frameworks may expect all
positional data to be in world space. However, one could easily also provide a model matrix for the impostor
along with world space camera parameters for visualization frameworks supporting this. VR rendering in
Unity uses asymmetric view frustums to render for each eye. For generic integration into visualization
frameworks, we provide camera parameters with a symmetric view frustum containing the original asym-
metric frustum, taking this into account in further processing of the visualization rendering results.

In phase 3, the visualization process renders the visualization according to the stereoscopic camera
parameters and provides the visualization rendering to the VR process. The visualization process is expected
to provide two OpenGL color textures containing the stereo rendering results, which are sent to the VR
process using the mint texture-sharing channel. To accommodate different rendering architectures of
visualization frameworks, the result textures can be provided individually using two separate function calls
to mint or jointly via a single function call. The latter method implements a single-pass stereo (“double-
wide”) texture-sharing mode, ensuring a synchronized transmission of visualization results for both eyes at
once. Visualization parameters can be sent from the VR process to the visualization process via data
channels, and the visualization process might also send back parameter state changes, e.g., to update user
interface elements in the VR scene (see Sect. 5).
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In phase 4, the VR process integrates the visualization result seamlessly into the VR environment with
the help of the impostor object. The underlying idea is that the impostor screen-space footprint acts as a
stencil to cut out the rendered visualization from the shared texture, while the impostor geometry embeds the
visualization in the 3D space. Further, the 3D impostor object also fulfills the role of a physical repre-
sentation of the scientific dataset that can be interacted with in the VR scene. We project the visualization
result into the VR scene through a custom shader written in HLSL/Cg that we attach to the impostor as its
object material. As such, the impostor is rendered by the Unity rendering pipeline in the same manner as all
other game objects in the scene. The actual shading of the impostor is a simple RGBA-color texture access
according to interpolated screen space coordinates of impostor fragments.

Since the shader only writes fragment colors, the original depth of the impostor geometry stays untouched,
ensuring correct occlusion between the impostor and other objects in the VR environment. As a result, the
impostor geometry embeds the dataset in the 3D scene and acts as a projection surface for the visualization
rendering. When the camera position is inside the dataset, we disable backface culling for the impostor object,
such that the backfaces naturally provide a projection surface for the visualization. Note that this way of
texturing the impostor effectively and intentionally cuts out all other contents of the rendered visualization that
lie outside the impostor silhouette. Meanwhile, alpha blending ensures that transparent parts of the visual-
ization inside the impostor silhouette seamlessly blend into the VR scene. This approach is only an approx-
imation for correct blending, i.e., virtual objects inside or behind the impostor in the VR scene are not
considered by the visualization but simply overlaid with the visualization result. For cases where correct
blending is required, one may include a feedback loop informing the visualization process of geometry inside
the dataset. This information could then be used, e.g., for early ray termination in case of volume rendering.

4.3 Inter-process data and texture-sharing

The mint library implementation provides data structures, code routines, and conventions regarding how
data is exchanged between a VR steering process and a visualization rendering process. The central design
goal is to provide each process with data it can immediately use, with mint normalizing data semantics and
performing conversions, e.g., camera parameters stemming from Unity (left-handed coordinate system) are
converted to be usable for construction of camera matrices in OpenGL (right-handed coordinate system).
Currently, mint provides implementations of the same, compatible data structures and data exchange rou-
tines in C# (used by Unity steering) and C+4 (used by visualization rendering). We refer to Listing 3 in
Appendix A.2 for C++4 pseudo-code of the core mint data structures and IPC methods.

mint uses topic-based channels for data exchange, i.e., either process can broadcast and receive data identified
by a topic name. For the data backend, we use the ZeroMQ library,” utilizing the PUB/SUB sender/receiver
pattern. Data topics can be created and received on the fly by providing a topic name both sender and receiver
agree upon. For the core data structures, mint provides automated serialization to and from JSON.'® The actual
semantics and structure of the exchanged data (data type) are either implied by the topic name (e.g., Cam-
eraProjection) or by convention as specified by the programmer of a feature. This approach fits our goal of
facilitating easy and rapid prototyping. At the same time, we avoid breaking visualization frameworks that may
not support all features of a given VR environment, e.g., a visualization process might not implement transfer
function editing via mint but might still implement dataset rendering and other VR interactions.

Efficiently sharing textures between processes is critical to maintaining performance suitable for a VR
experience. mint uses the C++4- software library Spour2'" (and the Klak Spout Unity plugin) to share OpenGL
textures. Spout internally relies on DirectX features (Microsoft 2021; Gold and Subtil 2010) to exchange texture
contents across processes while leaving the texture in GPU memory (a zero-copy mechanism). Due to the
dependency on DirectX, Spout only supports machines running Microsoft Windows.

5 Collaborative virtual environment: VRAUKE

On top of the technical implementation of mint, we created the virtual environment VRAUKE using the
Unity engine, which acts as a proof-of-concept for the collaboration use case outlined in Sect. 3. The goals

° https://zeromq.org.
19 https://github.com/nlohmann/json.
' https://leadedge.github.io.
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for this implementation were (1) testing and evaluating the technical feasibility of mint, and (2) exploring
interaction paradigms with visualized datasets in VR. Based on the personas described in Sect. 3, the
following requirements were identified:

e R4 Provide different interactive visualizations to expert users in a unified VR environment with
sufficient performance.

e RS Allow users to manipulate the visualization using typical tools from the visualization domain, like
transfer functions or transformations.

e R6 Have multiple users remotely act on a single visualization with a network-synchronized state to
enable a collaborative experience.

5.1 Visual design

As the virtual setting for analyzing scientific datasets, we chose a circular laboratory scene inspired by
modern anatomical theaters (R4). Figure 4 depicts the scene and different interaction scenarios with a
visualization rendered by Inviwo. The laboratory contains the visualized dataset in the center, as well as
interaction tools and avatars of other collaborators connected to the multi-user session around it. This room
style and layout provide users with a familiar and minimalistic environment that does not need much
exploration in itself, thus directing attention to the visualized dataset. Second, it also allows us to set up the
scene lighting in a uniform, diffuse, and indirect way that roughly corresponds to the visualization result
(which is itself not affected by Unity lighting). This prevents the visualization from seeming “out of place”
because of incorrect or non-matching lighting. Third, the room layout also helps with collaborative inter-
action, as it provides a maximized overview of what others are doing. This is important because, as all
collaborators share a common state, a notion of “ownership” of tools and the visualization itself (e.g., while
zooming or rotating) is required and has to be communicated visually as well.

5.2 Interaction design and collaboration
5.2.1 Principles

For easy accessibility and intuitive user experience, we designed VRAUKE with a “grab and use” inter-
action paradigm in mind, following already established patterns from other VR applications and games. We
encourage the user to explore the data by direct manipulation using the VR controllers or hand tracking if
supported by the HMD. Interaction tools represented as virtual-physical objects (e.g., an actual cutting
plane) in the lab scene provide access to specialized visualization features representing the capabilities of

Fig. 4 VRAUKE laboratory example. a Laboratory overview with (left to right) file loader panel, participant avatar 1,
animation player in the background, mint dataset, participant avatar 2 (currently talking), cutting plane, and transfer function
editor. b Dataset loaded, scaled up, and rotated slightly. ¢ Transfer function modification via Ul visible in the background.
d Cutting plane applied to obtain a head cross-section. e Close-up of dataset rendering received from Inviwo. f Inviwo desktop
application rendering stereo frames; additional mint processors and stereo subgraphs are highlighted. This figure shows an
example of an MRI head scan distributed as an Inviwo example workspace (dataset size 13 MB). Dataset courtesy of Stefan
Rottger
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individual visualization backends and datasets. This way, we mostly avoid using desktop-like 2D menus in
the VR environment while allowing for immersive, hands-on exploration (RS).

5.2.2 Interactions

As explained in Sect. 4, the setup and rendering of the Unity impostor ensure that pose and scale manip-
ulations of the impostor game object translate to appropriate visualization rendering. Thus, in VRAUKE,
established VR interaction paradigms to grab, move, rotate, and scale the dataset with controllers, as well as
locomotion, work without special support by the visualization process.

5.2.3 Tools

Advanced user interaction features are implemented in the form of interaction tools that are backed by
capabilities of individual visualization applications for their respective datasets (R5). Interaction tools are
objects placed in the VRAUKE laboratory and follow our hands-on interactivity goal. Following the grab-
and-use paradigm, they provide strong affordances (Norman 2013) on how they can be used. The currently
implemented tools are a cutting plane, a transfer function editor, and an animation player (Fig. 4a). The
interaction tools transmit their internal state via individual mint data topics and may depend on information
provided by the visualization application. If the currently active visualization process supports the inter-
action tool, the visualization of the dataset will be adjusted accordingly. This loose coupling of interaction
tool and visualization features ensures that VRAUKE can be easily used with different visualization
backends. Visualization frameworks are free to support multiple, all, or none of the available interaction
tools.

5.2.4 Collaboration

As outlined in our use cases, a major goal was to facilitate collaborative visualization by utilizing features of
the VR framework (R6). In VRAUKE, we achieve remote and local collaboration using multiplayer session
management features of Unity, made available through the Photon Unity Networking plugin (PUN). The
multiplayer integration for VRAUKE consists of adding game object state synchronization via the Photon
API to the impostor, the loader panel, and the interaction tools. Following an “ownership” principle,
collaborative objects in VRAUKE have only one user manipulating its state at a time to avoid conflicts.
However, it is possible for different users to use different tools simultaneously, e.g., one user could change
the transfer function properties while another could work with the cutting plane tool. Depending on the
actual use case, constraints on this behavior could be implemented in Unity, i.e., actively used tools could
automatically exclude the use of others, if necessary, for usability reasons or because of limitations of the
employed visualization rendering backend. Users participating in a collaborative session are represented as
minimalistic avatars wearing HMDs in the scene. Further, users are labeled by their name and are able to
communicate through voice chat following a push-to-talk scheme using a VR controller button.

5.2.5 File handling

The project loader panel user interface on the wall provides an overview of visualization project files that are
available for exploration in the VR session. It also allows switching between different visualizations without
leaving VR. Loading a project file starts the visualization application associated with the project file
(identified by file extension) as a new process in the background, transparent to the user. As soon as the
visualization framework begins rendering, the dataset impostor shows the rendered dataset visualization.
Visualization projects suitable for VRAUKE need to be prepared beforehand for correct VR rendering. This
preparation mainly involves enabling stereo rendering in the target visualization framework and connecting
VR interaction tools to appropriate visualization features/parameters. As all rendering is done locally on
each user’s machine, the collaborative scenario requires the appropriate visualization frameworks and
visualization project files to be shared and installed beforehand. However, it would be trivial to support such
data sharing within the Unity application as well, e.g., through a cloud storage provider.
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5.3 Use of the system

The mint and VRAUKE systems have three groups of target users at different levels of expertise and
abstraction: (1) end users inside a VRAUKE VR session, e.g., domain experts or the general public, (2) VR
environment developers and designers, e.g., artists or UX designers using Unity, and (3) visualization
framework developers and visualization researchers.

Users of Group I use VRAUKE, or a similar mint VR steering integration, for data exploration or
analysis through the interaction tools and paradigms provided by the VR environment. This does not require
knowledge or expertise about VR or visualization software. Instead, they may be informed by users of
Group 2 or 3 about the use of the VR environment, the dataset they see in VR, and available modes of
interaction. Group 2 users design and implement VR settings according to use cases and specific needs of
target users (Group 1). They use an existing mint integration to add visualizations to the VR environment
and, e.g., connect visualization capabilities to interaction tools or other elements in the scene. These users do
not necessarily need to know in detail how mint is integrated into the visualization software. However,
depending on the use case and how visualization capabilities are exposed by the respective software, they
may modify the mint integration with the visualization framework or coordinate with Group 3 users to
expose additional visualization features for use in VRAUKE. Group 3 users integrate the mint inter-operation
rendering protocol into their visualization software using the mint API. They have the necessary background
to decide how mint can be best integrated into the visualization framework’s architecture and source code,
e.g., how to set up stereo rendering in a framework or how the data flow for mint data channels exposing
visualization properties should be routed.

While the main concerns and responsibilities of the user groups appear to be clear, they may also become
blurred as a result of close collaboration. Users may request features they require at their own level of
system use from others, recognize relevant features they could provide to others, or at some point become
familiar enough with the system to implement features themselves, e.g., when domain experts become
invested in an immersive analytics tool and want to modify the VR environment to better suit their needs.

6 Evaluation

We evaluate our system in three ways. First, we report measurements for the inter-process frame rendering
round-trip time, i.e., the frame lag introduced by the mint protocol, from broadcasting camera parameters in
the steering process to receiving the corresponding visualization results in the impostor shader. Second, we
cover the integration of the mint protocol into the visualization frameworks Inviwo, MegaMol, and Para-
View, implementing message exchange and stereo rendering for VR integration. Third, we report the results
of an informal evaluation with two domain experts inspecting datasets from their domain in VRAUKE. We
did not conduct a controlled user study of VRAUKE as we focused on assessing the general need for such a
system, its technical feasibility, and the development of prototypical use cases.

6.1 Frame lag in inter-process rendering

This test was conducted using a minimal rendering application, mint-rendering, which integrates the mint
C++ rendering API and renders a colored quad (two triangles). We chose a minimal application with
negligible overhead to be able to explicitly control the rendering process performance, as well as data
logging and benchmark setup. Additional frame lag measurements of VR sessions with real-world datasets
rendered by MegaMol are available in Fig. 7 (Appendix A.1). However, analyzing frame lag using a fully
featured visualization framework influences measurements depending on the dataset, the configured visu-
alization pipeline, and the exact camera animation path (Bruder et al. 2020). To isolate the effects intro-
duced by the mint rendering protocol, in the following, we analyze the minimal controlled setup outlined
above.

The steering process in these measurements was the VRAUKE application implemented in Unity (version
2019.1). In terms of GPU workload, the VRAUKE scene and steering overhead can be regarded as light-
weight, as it consists of few simple assets with textured triangles, i.e., no heavy rendering workloads for
features like level-of-detail for high-poly meshes, scene culling, or real-time global illumination are present.
For the benchmark, we used native Unity tooling to animate a circular camera path around the dataset
(lasting 15 seconds), followed by a rotation, up-scaling, and down-scaling of the dataset (also lasting
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Fig. 5 Frame lag and rendering performance for mint-rendering (rendering process, dotted orange line) and VRAUKE
(steering process, dotted purple line) over 30 seconds. Mean and standard deviation (blue line and error band) of frame lag is
measured for artificial rendering delays of O ms/f, 10 ms/f, 20 ms/f, 50 ms/f, and 100 ms/f. All measurements are in
milliseconds per frame, lower is better. Note that each plot has an individual y-axis scaling. Top: Results on AMD Radeon
SSG, Vega GPU architecture (AMD Ryzen 2700X 8c/16t CPU, 32 GB DDR4 RAM, Windows 10). Bottom: Results on
NVIDIA Titan RTX, Turing GPU architecture (Intel Core i7 9700K 8c/8t CPU, 64 GB DDR4 RAM, Windows 10). For more
details, please zoom in on the digital version

15 seconds). On startup, the mint-rendering process was configured with a specific target rendering per-
formance between 0 ms/f (unbounded FPS) and 100 ms/f (10 FPS). Frame lag measurements started after a
10-second warm-up period.

To track frame lag in the system, we attach the current Unity frame ID to the mint StereoCameraView
update message. The mint-rendering application embeds the received frame ID into a pixel of the shared
texture that the Unity impostor shader extracts and writes into a GPU buffer. We track the frame IDs during
the VR session and download them from GPU memory in one batch. This avoids impacting rendering
performance during measurement due to repeated GPU-CPU data transfers.

For rendering in the VRAUKE steering process, we define discrete frame lag (integral frames) and frame
lag (time) in terms of the frame IDs where rendering of a camera configuration has been requested via mint,
and presented on the screen during impostor shading:

— framelD

discreteFramelLag = frameIDl,,esemed

requested

frameLag = frameEndTime

presented — frameStartTime

requested *

We measure the frame start and end time once as wall-clock time in milliseconds at the start of a frame, such
that for a frame with ID n holds frameEndTime, = frameStartTime, _ .

Figure 5 documents the frame lag time (mean and standard deviation) as plots over a 30-second period
for different mint-rendering artificial rendering delays and two different graphics cards. The plots average
200 ms of measurements for mean and deviation, i.e., the 30-second measurement period is binned into 150
bins. The average runtime costs of the VRAUKE steering and mint-rendering processes are shown as orange
and purple dotted lines, respectively. VRAUKE rendering costs are measured to be consistently at 11 ms/f,
reaching the commonly used 90 FPS target for VR applications (Wang et al. 2023). This is expected
because Unity, or rather the SteamVR runtime managing the VR hardware and rendering, is designed to
keep a steady frame rate to ensure a good user experience. The mint-rendering application achieves the
targeted average rendering costs for the 20 ms/f, 50 ms/f, 100 ms/f rendering delays on both GPUs. For the
0 ms/f artificial delay, mint-rendering averaged rendering costs between 5 ms/f and 8 ms/f are measured for
the Radeon SSG and Titan RTX GPUs, respectively. For the 10 ms/f artificial delay, the rendering costs
vary between 11 ms/f and 15 ms/f, overshooting the targeted costs. This may be due to our simplistic target
delay implementation or due to workload scheduling effects in the graphics driver, i.e., the GPU driver is
unaware of our rendering cost intentions.
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The mean frame lag time and standard deviation (blue line and error band) mostly scale with the
corresponding mint-rendering frame cost. The frame lag plots show lots of jitter and cover a wide range of
possible values, e.g., on the Radeon SSG with a 10 ms/f artificial delay (RadeonSSG/10 ms/f), frame lag has
values in the range 7 ms/f up to 24 ms/f. However, the absolute frame lag time values need to be interpreted
in relation to the rendering performance of the steering process, i.e., discrete frame lag. Since VRAUKE
renders at 11 milliseconds per frame, frame lag time will be measured as multiples of 11 ms/f. We use frame
lag time to establish a common scale for all measurements shown in the figure. In the case of RadeonSSG/
10 ms/f, with 11 ms/f rendering costs for VRAUKE, this means the discrete frame lag is between zero, one,
or two frames: the rendering response either came back within the same frame it was requested (lag time <
11 ms/f), the next frame (11 ms/f < lag time < 22 ms/f), or two frames later (22 ms/f < lag time < 33 ms/
f). When looking at the discrete frame lag, the rendering response is presented predominantly within one
frame in the steering process: e.g., for RadeonSSG/10 ms/f discrete frame lag is on average 1, for
RadeonSSG/20 ms/f discrete frame lag is 2.5, for RadeonSSG/50 ms/f discrete frame lag is 5.5, and for
RadeonSSG/100 ms/f discrete frame lag is 10.5.

Thus, on average, the mint inter-operation protocol delivers frames within expected bounds. However, as
the two processes run simultaneously on one machine, their individual rendering performance is also
influenced by other factors that the mint implementation cannot control, like process scheduling by the
operating system, CPU utilization, GPU driver intrinsics, and GPU workload.

We interpret the measurements for RadeonSSG/0 ms/f and TitanRTX/0 ms/f as examples of such
systemic factors: In the 0 ms/f artificial delay scenarios, for the first twenty seconds, the mint-rendering
process runs faster than the steering process, delivering rendering results within the same steering frame it
was requested, i.e., the frame lag time and steering lines are identical, with little jitter. During measure-
ments, on startup, we manually clicked into the steering process window to make it the focused window of
the desktop session, i.e., a foreground process, making mint-rendering a background process. At second 20
into the benchmark, we manually clicked into the mint-rendering window to switch process priorities, i.e.,
making rendering the foreground process. This priority switch is visible as a spike in the plots for all
measurements, leading to a slightly lower average frame lag time for most scenarios on the Titan RTX GPU.
For the 0 ms/f artificial delay scenarios however, focusing the rendering process improves mint-rendering
performance but drastically worsens steering process performance (purple line shoots up), i.e., the cost to
render the VRAUKE scene went up 2x (from 11 ms/f to 23 ms/f) on the Radeon SSG, and 4x (from 11 ms/f
to roughly 40 ms/f) on the Titan RTX. We think this is best explained by a form of resource starving: the
mint-rendering process, being a foreground process, is likely given priority access to CPU and GPU
resources by the operating system. As such, the rendering process is able to submit large amounts of work to
the GPU, occupying GPU and other system resources to such a degree that the background steering process
is starved. This explanation is also supported by the observation that for all other artificial delay scenarios,
the process priority switch does not influence VRAUKE performance.

Due to our definition of frame lag, a lag less than the rendering cost of a steering frame should not be
possible, i.e., a rendering result cannot be presented before the steering requested it. The RadeonSSG/0 ms/f
scenario adheres to this assumption. In the TitanRTX/0 ms/f scenario however, the priority switch leads to a
frame lag time of 0 ms/f and even negative lag up to —10 ms/f. This can be explained by the Unity
rendering architecture and GPU driver intrinsics. The Unity engine employs a multi-threaded rendering
system, where a CPU thread processes user inputs, game logic, and render data preparation. A dedicated
GPU thread receives these prepared GPU workloads and submits them to the GPU, e.g., via OpenGL
commands. This enables the CPU thread to start processing data for the next frame while GPU rendering of
the current frame is happening. A frame lag of 0 ms/f occurs when a frame with frame ID n has been
processed by the CPU thread and passed for rendering to the GPU thread, subsequently starting CPU
processing of frame n + 1. If mint-rendering receives the camera parameterization for frame n 4 1 and
provides the resulting image before Unity GPU processing of frame 7 is finished, the shared texture contains
frame ID n + 1, while being processed on the GPU for impostor shading of frame n. During data analysis,
this leads to a frame ID difference calculation of

discreteFrameLag = framelD,,,,sopi0q — framelD oy e 04
=n—(n+1)=-1

producing a cancellation of timestamps upon frame lag time calculation



mint: Integrating scientific visualizations... 1159

frameLag = frameEndTime,,, o onieq — frameStartTime,,q, o eq
= frameEndTime, — frameStartTime,

= frameEndTime, — frameEndTime,
=0.

A negative frame lag time can be explained by the Unity multi-threaded rendering architecture in interaction
with GPU driver intrinsics and the VRAUKE steering process being a background process with high
rendering cost. GPU drivers may asynchronously queue rendering requests instead of immediately sub-
mitting requested OpenGL work to the GPU. This lets an OpenGL application perform iterations of the main
render loop without any rendering actually being done on the GPU, until the GPU driver emits a larger GPU
work package at a later point in time.'*> We hypothesize that due to the GPU driver asynchronously queuing
GPU work, the Unity CPU thread is able to perform processing of multiple frames and send corresponding
camera requests via mint, while the Unity GPU thread is starved by mint-rendering for GPU resources and
fails to progress rendering state. Meanwhile, mint-rendering, a foreground process with little rendering cost
of roughly 3 ms/f, is able to receive and process the latest rendering requests from the Unity CPU thread,
providing a rendered image with an embedded frame ID far ahead of the resource-starved Unity GPU
thread, i.e., it appears as if mint-rendering rendered in the future.

6.2 Visualization renderer integration

Easy and non-intrusive integration of the mint library into existing visualization frameworks is a central
design goal of our system. In this section, we briefly report on our integration of the mint visualization
rendering mechanism into the Inviwo, MegaMol, and ParaView source codes, how to achieve stereo
rendering, and integration of interaction tools with these visualization frameworks for use in VRAUKE
sessions. Detailed descriptions regarding the integration are available in Appendix A.3. Source code
excerpts are provided in the supplemental material (Geringer et al. 2024).

6.2.1 Inviwo

Figure 4 shows our mint integration into Inviwo. We implemented new Inviwo processors that expose
functionality for receiving and sending data packages (ZmgReceiver, ZmgVolumeBoxProcessor) and sharing
textures (Spout) (Fig. 4f). The dataset bounding box is provided by data source processors, e.g., the Volume
Source processor, while incoming render parameters like camera and interaction tool state (cutting plane and
transfer function editor) are linked to relevant processors using property links. The final visualization image
is passed to the Spout processor for texture-sharing. Stereo rendering is achieved by manually setting up a
processor network that renders the dataset for each eye separately. This implementation is based on an early
prototype of the mint concept in Inviwo.

6.2.2 MegaMol

Figure 1 shows our mint integration into MegaMol. We integrated mint into MegaMol by interfacing with
View3D visualization graph modules, passing the VR camera parameters to the View3D camera, and
broadcasting the visualization result contained in the View3D framebuffer. Stereo rendering is achieved
automatically by executing the existing module graph once for each eye. Interaction tools are also set up
automatically for synchronization via mint when corresponding graph modules are recognized. This
implementation did not require writing new MegaMol modules but could be fitted into the MegaMol
frontend code, which prepares and executes the module graph. The benefit of this approach is that VRAUKE
VR capabilities can be used for any MegaMol project containing a View3D without special preparation. The
user only needs to activate the mint integration via a configuration flag on MegaMol startup.

12 Word on the street says this mechanism sometimes may lead to unexpected and difficult-to-explain performance
measurements of OpenGL visualization algorithms on some GPUs.
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Fig. 6 The volume from the ParaView example data is rendered (left), sent via mint, and displayed in the VRAUKE application
(right). For our prototype, we used ParaView’s Xrinterface plugin and modified its rendering backend, VTK. This figure shows
the Wavelet example visualization distributed with ParaView (dataset size 270 kB). The dataset itself is dynamically generated
during runtime using a periodic function

6.2.3 ParaView/VTK

Our mint integration into ParaView/VTK can be seen in Fig. 6. We modified the ParaView XRInterface
Plugin, which uses VTK’s OpenVR module to render stereo images into dedicated framebuffers. We inject
mint stereo camera data into the vtkOpenVRCamera class and intercept the rendering result textures in
vtkOpenVRRenderWindow. We do not need to explicitly emulate stereo rendering, as this is already handled
by the plugin. In order for VRAUKE to function properly with ParaView, we further needed to mark
ParaView as a background OpenVR process and disable automatic rendering of a ground floor drawn by
ParaView into the VR framebuffers, as in our setting VRAUKE provides the user with a virtual environment.
With only previous knowledge about ParaView from the user perspective, most of the time and effort went
into understanding the visualization pipeline implementation and finding the appropriate sections to make
the necessary modifications.

6.3 User tests with domain experts

We conducted two dedicated user tests with domain experts from the respective domains covered by the
existing VRAUKE integrations: medical science and material science. Both users performed various tasks
while employing a concurrent think-aloud method to gain insights after receiving a basic introduction to the
use of the system. After the VR session, an unstructured closing interview was conducted, mainly based on
the question of whether a system like VRAUKE might provide additional value when viewing datasets. The
VRAUKE collaborative features were not subject to testing.

User A, a clinical neurologist with limited VR experience, was shown a dataset of a magnetic resonance
imaging (MRI) head scan using VRAUKE (Fig. 4) and was asked to compare the data exploration process to
their current clinical practice. In terms of user experience, the participant missed an easy approach to
handling the dataset, coming from a 2D screen display that only provides cut perspectives from top, side,
and front, and reported that a limit in degrees of freedom, as well as predefined views and snapping to axes,
would be useful for the dataset and the cutting plane tool. Additionally, the user criticized the need to be
very close to the dataset to interact with it and suggested additional controls for scaling and rotating the
dataset while standing further away. Still, the user reported that for specific tasks, e.g., from the area of
neurosurgery but also for the education of medical students, they believe that total freedom of movement
and the possibility to “dive into” the dataset could be beneficial.

During the test, the rendering quality was impaired due to the specifications of the on-site test system.
Therefore, the corresponding frame rates were lower than the desirable limits for VR. User A still reported a
sufficient visual quality for clinical use while highlighting the benefits of 3D rendering. The user did not
exhibit or report any effects of motion sickness. Using the system was described as “fun” and “inviting to
explore.” The user also highlighted that using the system in clinical practice might help improve privacy
regarding patient data, which would otherwise be visible on-screen to others.
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User B, a material scientist, reported a passing experience with immersive virtual environments from
short CAVE demonstrations. The user noted that they felt grounded and immersed in the VRAUKE labo-
ratory setting. They inspected a porous media dataset (Fig. 1) stemming from a simulation in their domain.
The user characterized the immersive interaction with the data as “cool.” During data exploration, they
compared the setting and interaction methods to their daily data analysis workflow using a desktop-based
analysis and visualization software established in their field (Stukowski 2009). Utilizing the cutting plane,
the user was interested in localizing cracking patterns emerging from force exerted on the porous medium.
Using controllers, they stated that localizing and inspecting clusters of stressed or cracked material felt more
natural than with the desktop solution, where they slice the dataset by entering numerical offset values by
hand. However, they also emphasized their need to reliably reproduce analysis and visualization settings
related to interesting findings, for which they usually note down the involved numerical parameters. Thus,
they suggested adding saving and loading mechanisms of visualization session state to VRAUKE. During the
session, occasionally, the visualization rendering lagged noticeably. The user commented that despite the
visualization lag, they still felt immersed in the scene due to the surrounding laboratory setting.

User B loaded and inspected other visualization projects available in the VRAUKE project loader panel
by themselves and unprompted. They experimented with the interaction tools in the scene and how they
interact with the current dataset. While not considering daily use, the user could imagine presenting research
findings collaboratively to colleagues and students in VR or inspecting the data in VR and exporting
interesting findings as images for further use.

Finally, in the context of public demonstrations, we presented VRAUKE with different visualization
demos to school students, journalists, colleagues, industry representatives, and research collaborators.
Depending on the degree of familiarity with VR environments, users were quickly able to interact with the
dataset and apply the interaction tools, e.g., move the cutting plane into the dataset.

7 Discussion

Our informal tests with domain experts and public demonstrations at different venues indicate that VRAUKE
is usable for the general public and domain scientists, as stated in our goals. The laboratory environment
sparks curiosity, and people explore the datasets themselves as well as the environment and the interaction
affordances. While the overall usability is acceptable for domain experts, the current VRAUKE interaction
tools and features are too generic, and the experts commented that domain-specific abstractions and
especially manipulations are still required. This also aligns well with our approach: user interactions can be
designed by HCI experts in the VRAUKE environment, passing only parameter values to visualization tools,
which can adjust rendering accordingly or be extended separately, if required.

We observe that most of the requested features would only require adjustments and additional features
on the VR side, i.e., the user interface, and would not change the visualization frameworks at all. For
example, saving and loading visualization session state to and from disk are supported by Inviwo, MegaMol,
and ParaView. Connecting this feature to VR only requires implementing the respective tool, a corre-
sponding mint message, and code that invokes the respective functionality in each of the backends. This
finding, in a way, replicates user reactions to the interactions available in the OpenVR integration of
ParaView.'? Due to VRAUKE being a very generic proof of concept, it should serve as a starting point for
collecting more (and more specific) interaction requirements and, as a consequence, extend and refine the
available tools in VR. Some of these requirements can be as trivial as using proper metaphors and termi-
nology (e.g., using terms like “tissue density” instead of “transfer function”), which are irrelevant for the
employed visualization method but essential for domain scientists to lower the barrier to entry as much as
possible.

Thus, depending on the actual tasks, goals, and proficiency of a user in a VR session, interaction tools
need to be deliberately designed to suit the application use case and workflow. For example, simply
translating all possible 2D UI elements from a visualization framework to VR interaction tools would
require time and effort and may not help the user achieve their goals if the interaction tools overwhelm
them, e.g., by overcrowding the VR scene or not helping with specific tasks. A semi-automated translation
from visualization 2D Uls to VR user interfaces may be an option to minimize manual labor. Current
solutions to integrate applications, e.g., web browsers, into VR environments use image-based embedding of

13 https://www kitware.com/navigation-basics-in-virtual-reality-with-paraview/.


https://www.kitware.com/navigation-basics-in-virtual-reality-with-paraview/

1162 S. Geringer et al.

the respective graphical user interfaces (GUIs) and forward user interactions (point and click) back to the
original process. With an existing mint integration for a visualization framework, sending the GUI images to
VR would also be easy to achieve. However, we place this concern outside of mint’s core responsibilities.

Both the loose coupling in our design and the extensible interface to visualization renderers facilitate
extending the currently available features. mint data communication channels exchange structured data
(JSON) but do not enforce strict semantics and thus are more robust against breaking changes and added
features, as mismatched data topics or parameters can simply be ignored and can lower the bar for rapid
prototyping. On the downside, these open semantics have to be parsed into the specific parameters and
implementations of the respective visualization frameworks, i.e., they require integration into the source
code.

Frame lag and performance

The measured frame lag reported in Sect. 6.1 is within the expectations of roughly one to three frames,'
given asynchronous and independent frame rendering for visualization and VR. In practice, there are
additional factors that are hard to control. The operating system or graphics driver can prioritize applications
differently, depending on whether they are focused, as seen in Fig. 5 for artificial rendering delay O ms/f,
where a focus switch changes the performance of rendering and steering. Real-world use of visualization
software can lead to similar situations, e.g., particle rendering with MegaMol can reach hundreds of FPS,
given a small dataset and powerful GPU.

Our evaluation also hints at a practical solution: running the VR process as the focused process avoids
starving it (first twenty seconds of all measurements), with the tradeoff of slowing down the rendering
process slightly, i.e., accepting higher frame lag. However, even with VR as the focused process, for high-
performance visualization rendering, mint provides results mostly within the same frame to VR, i.e., “in-
stantly.” On paper, the resulting system behavior is equivalent to tightly integrated solutions, i.e., where
visualizations are embedded within the VR rendering loop. When visualization rendering is slower than VR
rendering, higher frame lag occurs. Our user tests suggest that this is tolerated by users to some degree,
where in the presence of frame lag, an expert explicitly mentioned that the VRAUKE environment remaining
interactive “provides an immersive feeling.” However, the limits of tolerable frame lag are unclear and
probably depend on the individual user. We plan to study this effect in more detail in the future.

With tightly integrated solutions, however, slow visualization rendering also slows down rendering of
the VR environment itself, which is known to break immersion and cause disorientation or sick-
ness (Stauffert et al. 2020; Liu and Heer 2014). Thus, both for fast and slow visualization rendering, the
design of mint offers benefits over a tight integration. Distributing the rendering load of the VR and
visualization processes across additional dedicated GPUs could also avoid resource starving while maxi-
mizing performance for each process, but this would need explicit support from the involved graphics APIs
and the operating system, and would incur transmission costs over the PCle bus to integrate renderings.
Using Unity and SteamVR seems to always imply late frame reprojection, a motion-to-photon latency
optimization technique commonly used by VR backends (Waveren 2016). Such reprojection is detrimental
to perceived visualization lag in mint, as the VR backend is unaware of our image-based rendering approach
and introduces a slight but noticeable distortion in VR.

Several optimizations can improve the frame lag and user experience. There are existing methods for
predicting camera positions based on HMD motion (Saad et al. 1999) or reprojection of rendered frames
with a depth buffer (Zellmann et al. 2012). We have prototyped both, but there are several caveats to the
latter: the current approach using Spout as a texture-sharing backend in mint does not support depth or more
than 8 color bits per channel, and bits packing behaves differently across OpenGL and Direct3D, making
this solution unstable and error-prone. Additionally, modern OpenGL renderers can override (Gilg et al.
2021) or neglect depth buffer semantics arbitrarily, such that transported depth cannot be generally relied
upon for reprojection. Explicitly stalling the visualization renderer until the next steering frame request
comes in from mint could also be beneficial for very low visualization frame rates, as it avoids waiting for
the slower visualization renderer in the steering process in case a (probably outdated) visualization frame is
still being computed. Such explicit synchronization of the inter-operation between the steering and ren-
dering processes requires further investigation.

14 For details, we refer to the supplemental material (Geringer et al. 2024).
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API and integration

Our evaluation shows that integration of mint into existing visualization software has low complexity but
still depends on knowledge of the respective software architecture and rendering pipeline design. Integration
of the mint API worked easily with MegaMol, as it fits the design of the respective rendering pipeline very
well. For Inviwo, we used an older, less abstract mint API, but integration was also fast. The integration
prototype of mint inside ParaView/VTK has different limitations. Here, the main hurdle for integration was
missing familiarity with the ParaView code base, and most of the time was spent reading code and
documentation to find the correct spot for the integration.

8 Conclusion

In this paper, we presented mint, a generic framework to connect the domains of scientific visualization and
virtual immersive environments. We identified several scenarios in which such a connection could be
fruitful, but we also noticed that existing approaches to bring the two domains together make significant
compromises in at least one of them. We designed and implemented the mint inter-process rendering
protocol as a C+4+ library that is open source and provides the mint API as a rendering interface between
visualization and VR tools. Our mint integrations into three existing visualization frameworks (ParaView,
Inviwo, and MegaMol) and the Unity environment VRAUKE show that integrating mint into existing tools
requires little implementation effort.

With the loose coupling approach central to mint, we contribute an easy-to-use and technically up-to-
date implementation to bring scientific visualizations into VR and, at the same time, also preserve the
domain-specific advantages of both visualization frameworks and VR authoring tools. Our system allows
HCI researchers, artists, and UX designers to access visualization systems from within their domain-specific
authoring tools and workflows. This brings the potential to more easily translate state-of-the-art visualization
research to interactive and immersive experiences, making it more accessible to a broad spectrum of
audiences like domain experts, educators, or the general public, tailored to their specific needs.

From a technical perspective, improvements for mint need to address frame lag in the system. Here,
future work could apply techniques from image-based, mobile, and remote rendering research to reduce
frame lag perceived by a user inside a VR session.

Appendix
A.1 Frame lag on particle datasets

Figure 7 shows plots for frame lag with real-world datasets, using MegaMol as the rendering process and
VRAUKE as the steering process. We measured frame lag with four different particle datasets rendered by
MegaMol for a VR session. The datasets are:

Virus, looping animation, 498 MB file size, 214,440 particles per animation step

Injection, looping animation, 1.71 GB file size, particle count increasing up to 393,672 per step during
animation

Ceramic (see Fig. 1), static, 146 MB file size, 2,027,467 particles

Laser, static, 732 MB file size, 48,000,000 particles

Renderings of the datasets are shown in Fig. 8. MegaMol was configured to render the particle data using
ray casting of spheres within the fragment shader of the OpenGL rasterization pipeline and applying object-
space ambient occlusion for better visibility of spatial features. Since no acceleration data structures like k-d
trees or BVH are used, rendering performance is largely determined by the amount of particles the GPU has
to process for rendering. The benchmark setup and shown measurements in the plots are the same as in
Sect. 6.1. As such, the interpretation of the plots is analogous to our analysis in Sect. 6.1.

It is important to note that the benchmark setup analyzed in Sect. 6.1 uses a CPU-based artificial
rendering delay for the mint-rendering process without heavy GPU workload to cause frame lag in terms of
delayed rendering result texture messages.

In the visualization benchmarks presented in Fig. 7, particle rendering with MegaMol induces real GPU
workloads. In turn, the case where the rendering process is the focused window (last 10 s of measurements)
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Fig. 7 Frame lag and rendering performance for particle datasets rendered by MegaMol (rendering process, dotted orange
line) and VRAUKE (steering process, dotted purple line) over 30 seconds. The mean and standard deviation (blue line and error
band) of frame lag is measured for rendering of different datasets. All measurements in milliseconds per frame, lower is better.
Note that each plot has an individual y-axis scaling. Top: Results on AMD Radeon SSG, Vega GPU architecture (AMD Ryzen
2700X 8c/16t CPU, 32 GB DDR4 RAM, on Windows 10). Bottom: Results on NVIDIA Titan RTX, Turing GPU architecture
(Intel Core i7 9700K 8c/8t CPU, 64 GB DDR4 RAM, on Windows 10). For more details, please zoom in on the digital version

Fig. 8 The four real-world particle datasets rendered by MegaMol on the NVIDIA Titan RTX system. In these screenshots,
MegaMol renders in desktop mode (VR stereo rendering off). MegaMol stereo rendering performance is shown in Fig. 7. From
left to right: CCMV virus capsid rendering at 299 FPS, dataset from Speir et al. (1995), trajectory courtesy of P. Chacén; nozzle
injection rendering at 331 FPS, dataset courtesy of Heinen and Vrabec (2019); ceramic fracture simulation rendering at
122 FPS, dataset courtesy of V. Guski; laser ablation rendering at 72 FPS, dataset courtesy of Sonntag et al. (2009)

induces resource starving of the VR process also for low frame rates of the rendering process, e.g., for the
Laser dataset on the TitanRTX GPU. Thus, both for fast visualization rendering with high frame rates (Virus
on TitanRTX) and for low visualization frame rates due to heavy GPU workload with a larger dataset (Laser
on TitanRTX), the background VR process is starved for GPU resources due to high GPU load from the
rendering process.

A.2 mint API

Listing 3 depicts pseudo-code of the mint API, i.e., the core data structures and data exchange routines of
mint.
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struct CameraView { vecd eyePos, lookAtPos, camUpDir; };
struct StereoCameraView { CameraView leftEye, rightEye; };
struct CameraProjection {

float fieldOfViewY _rad, aspectRatio, nearClip, farClip;

uint pixelWidth, pixelHeight;

b

struct BoundingBoxCorners { vec4 min, max; };

struct DataReceiver { bool receive<Data>(Data& val, std::string const& name); };
struct DataSender { bool send<Data>(std::string const &name, Data const &val); };
struct StereoTextureSender { void send(const gltex left, const gltex right); };

Listing 3: mint data structures

A.3 mint visualization renderer integration

This section presents a detailed report on our integration of the mint visualization rendering mechanism into
the Inviwo, MegaMol, and ParaView source codes. The source code for these integrations is available in the
supplemental material (Geringer et al. 2024).

All three frameworks are written in C++, use OpenGL for GPU-accelerated rendering, and implement
rendering algorithms for scientific data like volumes, molecular data, particle data, and information visu-
alization techniques.

A.3.1 Inviwo

Figure 4 shows our mint integration into Inviwo. Inviwo implements visualizations in the form of a pro-
cessor network. Hereby, visualization data is passed between interconnected processor nodes, each of which
performs computations or data manipulations on its input data and provides output data for others to use.
Evaluation of the processor network is driven by updated input data, which triggers subsequent execution of
depending processors. The visualization result of a processor network is a 2D image, which is the output of a
renderer processor. Image contents can be viewed using a Canvas processor, which takes image data as
input and presents the image contents in a new window. We implemented new processors that expose
functionality for receiving and sending data packages (ZmgReceiver, ZmgVolumeBoxProcessor) and sharing
textures (Spout) (Fig. 4f). The dataset bounding box is provided by data source processors, e.g., the Volume
Source processor, while incoming render parameters, like camera and interaction tool state, are linked to
relevant processors (e.g., renderers) using property links. The final visualization rendering image is passed
to the Spout processor for texture-sharing. Stereo rendering is achieved by setting up a processor network
that renders the dataset for each eye separately. Implementing these Inviwo processors to participate in mint
data sharing took 925 lines of C++ code. This implementation is based on an early prototype of the mint
concept in Inviwo.

A.3.2 MegaMol

Figure 1 shows our mint integration into MegaMol. In MegaMol terminology, a visualization is defined by
the module graph, which is a collection of modules interconnected by calls defining the order of rendering
code execution. Module graph evaluation starts at a single entry point module, calling subsequent connected
modules to process or render input data. For 3D datasets, the entry module is a View3D module. The
View3D manages the 3D camera and navigation via mouse and keyboard, provides a bounding box of the
3D dataset, and holds the rendering results of the graph evaluation in a framebuffer. We integrated mint into
MegaMol by interfacing with View3D modules, passing the VR camera parameters to the View3D camera,
and broadcasting the visualization result contained in the framebuffer. Stereo rendering is achieved by
executing the existing module graph once for each eye. Integrating the mint rendering mechanism into
MegaMol took 599 lines of C++ code. This implementation did not require writing new MegaMol modules
but could be fitted into the MegaMol frontend code, which prepares and executes the module graph. The
benefit of this approach is that VRAUKE VR capabilities can be used for any MegaMol project containing a
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View3D without special preparation. The user only needs to activate the mint integration via a configuration
flag on MegaMol startup. VRAUKE interaction tools like the animation player and cutting plane need
matching visualization modules in the visualization project to function. However, interaction tools are set up
for synchronization via mint automatically when corresponding graph modules are recognized.

A.3.3 ParaView/VTK

ParaView uses the Visualization Toolkit (VTK) for rendering, and most modifications had to be applied
directly to VTK, as it provides access to low-level OpenGL objects. In a first attempt, we used ParaView’s
built-in stereo mode and integrated mint into the OpenGL2 module of VTK. The idea was to use the
SplitViewportHorizontal configuration, which displays both views side by side in the RenderView.
In vtkOpenGLRenderWindow: :Frame (), we split the resulting framebuffer into two separate
framebuffers, then sent them via mint’s stereo sender. Before rendering, the camera parameters are over-
written to match the configuration received from mint. The OpenGL2 module defines a stereo camera
(vtkCamera) by a focal point and an offset between the eye positions while mint defines separate cameras
per eye. Instead of converting the received parameters to a single vtkCamera, we decided to set the
camera parameters twice, once before rendering each view, inside vtkRenderWin-
dow: :DoStereoRender (). However, the main problem with this first approach is that ParaView
renders only on demand. Without a continuous update loop, we were unable to update to the received
camera parameters and trigger ParaView’s rendering again. Additionally, the default RenderView is
designed to show a downsampled version during interactions and only render full scale on still images,
which is not well suited for continuous rendering as needed for VR applications. These aspects led us to
consider other approaches.

We used the XRInterface Plugin for our second attempt, which facilitates continuous stereo rendering.
This plugin uses VTK’s OpenVR module to render its views into dedicated framebuffers before submitting
them to the HMD. This module’s VR camera (vtkOpenVRCamera) conveniently has individual view and
projection matrices for each eye that we could compute from the parameters provided by mint. After the
camera is set, rendering is performed from the new point of view. In vtkOpenVRRenderWin-
dow: : StereoRenderComplete (), we send the rendered textures through mint right before they are
given to the OpenVR compositor. Since both the XRInterface Plugin and VRAUKE try to output to the same
HMD through OpenVR, it was necessary to change the OpenVR application type in the XRInterface Plugin
from VRApplication_Scene to VRApplication_Background. This enabled us to run both
applications simultaneously without terminating one by starting the other application. Furthermore, we had
to disable automatic rendering of a floor in the ParaView VR scene since it obstructed the rendered dataset.
This was achieved by setting vtkVRRenderer: : SetShowFloor (). It took 181 lines of C++ code to
integrate mint into the VITK OpenVR module. The working prototype can be seen in Fig. 6. Since our
prototype does not consider the bounds of the rendered objects, we set the bounding box that is sent through
mint manually. With only previous knowledge about ParaView from the user perspective, most of the time
and effort went into understanding the visualization pipeline implementation and finding the appropriate
sections to make the necessary modifications.
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