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Simple Summary: Mantle cell lymphoma (MCL) is considered an aggressive lymphoid tumour with
a poor prognosis. However, according to recent studies, MCL is more heterogeneous than initially
assumed with indolent subtypes without the need for immediate intervention. Currently, there are no
routine biomarkers for the early prediction of relapse. The urge for personalized medicine has given
rise to “radiomics”—the quantification of heterogeneity by imaging based texture analysis which has
shown excellent results in numerous fields of application. Our study investigated the potential of
CT-derived 3D radiomics as a non-invasive biomarker to risk-stratify MCL patients, thus promoting
precision imaging in clinical oncology.

Abstract: The study’s primary aim is to evaluate the predictive performance of CT-derived 3D
radiomics for MCL risk stratification. The secondary objective is to search for radiomic features
associated with sustained remission. Included were 70 patients: 31 MCL patients and 39 control
subjects with normal axillary lymph nodes followed over five years. Radiomic analysis of all targets
(n = 745) was performed and features selected using the Mann Whitney U test; the discriminative
power of identifying “high-risk MCL” was evaluated by receiver operating characteristics (ROC).
The four radiomic features, “Uniformity”, “Entropy”, “Skewness” and “Difference Entropy” showed
predictive significance for relapse (p < 0.05)—in contrast to the routine size measurements, which
showed no relevant difference. The best prognostication for relapse achieved the feature “Uniformity”
(AUC-ROC-curve 0.87; optimal cut-off ≤0.0159 to predict relapse with 87% sensitivity, 65% specificity,
69% accuracy). Several radiomic features, including the parameter “Short Axis,” were associated
with sustained remission. CT-derived 3D radiomics improves the predictive estimation of MCL
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patients; in combination with the ability to identify potential radiomic features that are characteristic
for sustained remission, it may assist physicians in the clinical management of MCL.

Keywords: mantle cell lymphoma; tumour heterogeneity; imaging based texture analysis; risk
assessment; prediction; relapse; personalized medicine; precision imaging

1. Introduction

Mantle cell lymphoma (MCL) is a rare mature subtype of B cell non-Hodgkin lym-
phoma associated with an aggressive, or less frequently, indolent course. Despite the
increasingly better understanding of the pathology and therapeutic options, the prognosis
of MCL is generally poor, with 5-year survival rates of approximately 60% of the young,
transplant eligible patients [1–5].

In general, the clinical outcome of the disease is highly heterogeneous [5,6]. Novel
therapeutic options are constantly evolving, such as the CAR T-cell therapy Tecartus (brex-
ucabtagene autoleuce, Santa Monica, CA, USA) [7]. However, until today MCL remains
incurable. In general, clinical presentation and outcome of MCL are very heterogeneous
with minimal symptoms or progressive generalized lymphadenopathy, splenomegaly,
extranodal disease, and cytopenia, and thus require different treatment strategies [8–11].

As a consequence, the World Health Organization (WHO) updated the classification
of MCL in 2017, describing two main subtypes, “classical MCL” and “indolent leukemic
nonnodal/smoldering MCL,” with significant differences in the molecular characteristics,
clinical features, prognosis and treatment options [12].

In 2008, the MCL International Prognostic Index (MIPI) was developed - the first MCL-
specific prognostic model that incorporates age, performance status, lactate dehydrogenase
(LDH), and leukocyte count [13].

The combination of the Ki-67 index and MIPI led to the more refined combined MIPI-c
with a refined risk stratification, reflecting their strong complementary prognostic effects
while integrating the most relevant prognostic factors available in clinical routine [4].

The promising approach to detect circulating tumour DNA (ctDNA) seems a highly
promising biomarker in lymphoma with multiple landmark studies in aggressive B-cell
lymphomas proving its potential as the most advanced prognostic factor nowadays [14].

In 2018, Lakhotia et al. reported the results of ct-DNA monitoring during DA_EPOCH-
R chemotherapy in MCL, showing both a good correlation between the baseline ct-DNA
level and the total tumour volume and the high ability of ct-DNA clearance after one cycle
to predict a better PFS in those clearing rapidly the ct-DNA. However, due to the need for
patient-specific primers and standardization issues measuring of ct-DNA level has not yet
become established in the clinical practice of MCL yet [15].

Until now, no routine biomarkers have been established for early and accurate prog-
nosis prediction [13,16].

According to the ESMO guidelines, there is consensus to perform a contrast-enhanced
computed tomography (CT) scan of the neck, thorax, abdomen, and pelvis as initial
staging [17]. A PET/CT scan is especially recommended in the rare limited stages I/II
before localized radiotherapy, although reimbursement by domestic health insurance is
not ensured.

The emergence of technological innovation and the urge to fulfil personalized medicine
has given rise to the constantly evolving field of research called “radiomics”—a computer-
assisted technique for extracting and quantifying patterns, so-called radiomic features
within diagnostic medical images to reflect the radiographic phenotype using data charac-
terization algorithms. By capturing signal intensity distribution, i.e., grey-level patterns,
radiomics quantifies a large panel of phenotypic characteristics, such as shape and texture,
potentially reflecting intra- and intertumour heterogeneities [18–23].
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Studies show that tumour heterogeneity is a central feature of malignancy as it con-
tributes to treatment response, relapse, and overall survival [24–29]. Radiomics has shown
promising results to analyze tumour heterogeneity using different imaging techniques,
including artificial intelligence-based machine-learning algorithms [22,26,30–36]. Taking
into consideration the “whole tumour volume” assessment across the entire body instead
of just a tiny sample from a single site, radiomic analysis might represent a non-invasive
prediction approach to identify patients at high risk of relapse; early identification of these
patients could allow modification of their therapeutic management to reduce unneces-
sary toxicity and improve prognosis according to follow-up studies [18,20,37,38]. There
have been other studies on the diagnostic value of radiomics regarding different types of
lymphoma and the reproducibility of CT texture parameters [31,33,35,39,40].

However, to our knowledge, this is the first study to investigate the potential value
of longitudinal CT-derived 3D texture analysis for early predictive estimation of MCL
relapse based on radiomic changes during and after therapy. We, therefore, wanted to
determine (1) whether CT-derived 3D radiomic features are predictive for relapse and
(2) whether there are therapy-related changes in radiomic parameters that are characteristic
for sustained remission without significant differences to normal lymph nodes.

2. Materials and Methods
2.1. Patients and Imaging Protocol

In this study, 31 treatment-naive patients with proven mantle cell lymphoma (by
pathological reference assessment) who underwent contrast-enhanced CT or PET/CT
scan at our institution before therapy initiation and with available clinical and in-house
imaging follow-up data five years after the end of the first-line therapy were included in
this retrospective study at our institution between January 2005 and December 2018.

Demographic patient data, laboratory and clinical data (such as white blood cell count,
lactate dehydrogenase levels, and Ki-67 proliferation), disease stage according to the Ann
Arbor staging system, the existence of bulky disease (defined as a mass ≥ 10 cm in maximal
diameter), treatment regimen and clinical outcome data were recorded by thoroughly
reviewing electronic charts and the radiology information system.

Incomplete clinical and imaging data records and lack of histological confirmation
were exclusion criteria.

Additional inclusion criteria were treatment with an R-CHOP-based regimen (ritux-
imab, cyclophosphamide, doxorubicin, vincristine, and prednisone) alternating with or
instead of an R-DHAP based regimen (rituximab, dexamethasone, high-dose cytarabine,
and cisplatin) or R-FC (rituximab, fludarabine, and cyclophosphamide). Further exclusion
criteria included patients whose disease status was not confirmed at the end of therapy
and those who had disease progression within the first line of treatment.

All enrolled MCL subjects were followed up for at least five years, except those who
experienced death of any cause. A flow diagram of the cohort selection is presented in Figure 1.

Patients in clinical remission and without disease residuals on contrast-enhanced CT
or PET/CT scans were considered to be in complete response (CR). Imaging for assessment
of disease status was performed close to therapy initiation (max. 3 weeks) and 3, 6, and
12 months after having therapy as part of the routine staging.

As control cases, 39 treatment-naïve patients with non-small-cell lung carcinoma
(NSCLC) and normal axillary lymph nodes confirmed by at least two contrast-enhanced
PET/CT scans were identified from the radiology database from 2005 to 2010. The medical
records of the control cases were reviewed in 2018 to ensure that these subjects honestly
had normal axillary lymph nodes and did not harbor any hematological disease or axillary
lymph nodes metastases that clinically manifested only several years later.

Imaging of MCL patients before therapy initiation and their follow-up CT scans 3,
6, and 12 months after having started therapy and CT imaging of control subjects with
normal axillary lymph nodes were analyzed. A total number of 745 target lymph nodes
were eligible for inclusion.
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Figure 1. Recruitment pathway of the study.

CT scans were performed in the cranial-caudal direction on a multiple-row detector
CT scanner (Philips Brilliance CT 64-channel scanner and Philips Brilliance iCT 256-channel
scanner, Philips Healthcare, Cleveland, OH, USA) with the following acquisition and
reconstruction parameters according to standard protocol: tube voltage 100 kV–120 kV with
an automatically calculated tube current; collimation 40 × 0.625 mm and 64 × 0.625 mm;
matrix 512 × 512, 1 mm reconstruction thickness, and increment 0.5 mm after intravenous
administration of (Ultravist®370, Bayer Schering Pharma, Berlin, Germany) in weight-
adopted dose with a delay of 70 s to represent the portovenous phase of chest and abdomen.
Thin-slice CT scans were reconstructed using a soft tissue kernel (filter, B31f) for visual
assessment and texture analysis.

18F-FDG-PET/CT image acquisition was performed approximately 60 min after intra-
venous administration of 282 MBq of 18F-FDG (range 220-334 MBq). Patients fasted for
at least six hours before the injection; PET/CT scans were carried out with a 40-slice CT
with two overlapping X-ray beams and a 21.8 cm axial field of view PET detector Biograph
mCT (40)S (Siemens Biograph mCT(40)S, Siemens Healthineers, Erlangen, Germany). The
contrast-enhanced spiral CT scan was performed in the portal venous phase 80 s after intra-
venous contrast agent injection (Ultravist 370, Bayer Schering Pharma, Berlin, Germany) in
a weight-adopted dose using attenuation-based online modulation of tube current (CARE
Dose) with quality reference tube current setting (reference mAs) of 210 mAs, 120 kV,
16 × 1.2-mm collimation, a 512 × 512 matrix, and a 4 mm slice thickness followed by the
PET scan from the mid-thighs to the base of the skull in 5 to 8 bed positions. All PET scans
were acquired in 3D mode with an acquisition time of 3 min per bed position in time of
flight technique. PET data were reconstructed with attenuation correction using dedicated
standard software (PETsyngo, Siemens, Erlangen, Germany).



Cancers 2022, 14, 393 5 of 16

2.2. Image Processing and Feature Extraction

Images were evaluated by two experienced board-certified radiologists, with 10-year
experience in oncologic imaging and over 5-year experience in segmentation and texture
analysis. In cases of disagreement, consent was established by joint consultation. Target
lesions were selected based on Cheson criteria [41]. Segmentation and texture analysis were
performed using the software mint Lesion™ (mint Medical GmbH, Heidelberg, Germany),
which allows three-dimensional size and whole lesion radiomic measurements at multiple
times to examine temporal tumour heterogeneity.

All 745 included target lesions were segmented in a semi-automatic process. Tumour
boundaries were defined and manually contoured on axial CT images on the superior and
inferior parts of the lesion. The software algorithm computed the contour on the slices in
between for “whole tumour volume” data.

Final 3D segmentation was thoroughly reviewed, and if necessary, the contour was
manually modified (see Figure 2 for a depiction of the workflow).

Figure 2. The schematic diagram for data processing and analysis. Size measurements, including 3D
volume, were obtained as were first and second order textural features. Equations for these textural
features can be accessed at https://pyradiomics.readthedocs.io/en/latest/features.html (accessed
on 7 October 2021). Detailed settings of the extraction are listed in Appendix A, Table A1.

2.3. Statistical Analysis

Extracted radiomic features were tested as potential predictive factors. Lesion size
measurements in one- and two dimensions and 3D whole lesion measurements were used
as competing features. Textural features were selected based on the literature review and
Spearman’s rank correlation coefficient test results [31–34].

20 out of 72 texture features of first- and second-order derived from the grey-level
co-occurrence matrix were chosen for further analysis (see Table A2 in Appendix A). The
selected parameters were limited to 10 features of first- and 10 of second-order to avoid
overfitting [35]. First, the performance of the radiomic features was examined by using box-
and-whisker plots as a graphical representation to assess the distribution of the extracted
data set between CR (complete remission) and RD (relapse of disease).

Second, the Mann-Whitney U test for non-normally distributed features was used to
compare each selected texture feature across the two outcome groups.

A significance level of 0.05 was used for all statistical tests. Benjamini-Hochberg
correction was used in each study to estimate true type-I error probability and to account
for multiple hypothesis testing [42]. We used a spreadsheet that implements the Benjamini-
Hochberg method for calculating the corrected significance level according to Weinkauf
(https://github.com/WeinkMFG/MSExcel, accessed on 7 October 2021) as described by
Chalkidou et al. [43]. The adjusted level of significance was 0.01 assuming a false discovery
rate (FDR) of 0.05.

https://pyradiomics.readthedocs.io/en/latest/features.html
https://github.com/WeinkMFG/MSExcel
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Third, receiver operating characteristic (ROC) curve analysis was used to measure
the performance of texture features to discriminate between the CR and the RD group
for estimation of prognosis. The lower and upper limits of a 95% confidence interval
were computed from generalized estimating equation. The area under the curve (AUC)
was calculated for each feature. Optimal cutoff values were established with maximized
sensitivity, specificity, and accuracy (percentage of correctly classified images/study objects
as verified histologically) based on the Youden index to measure the effective clinical benefit
in diagnostic decision-making.

Radiomic analysis of the target lesions was performed at several time points (prether-
apy and follow-up imaging) to assess the modulation of the mutational profile over time.
Statistically significant features for future relapse were regarded as potential predictive
markers representing “MCL at high risk of relapse”.

To identify potential radiomic features that are characteristic for sustained remission
without a significant difference to normal lymph nodes, subgroup analyses of MCL patients
with complete remission (CR) and MCL patients with relapse of disease (RD) versus a
reference group (REF) with normal lymph nodes were performed by Mann-Whitney-U-test.
The result was considered significant if p-value was <0.01 after applying the Benjamini-
Hochberg correction for multiple testing.

All statistical analyses were performed using IBM SPSS Statistics for Windows, Version
22.0 (IBM Corp., Armonk, NY, USA) [44].

3. Results
3.1. Patient Characteristics

A total of 70 consecutive patients, 31 patients with biopsy-proven MCL (5 women and
26 men; mean age 61.5 ± 9.7 years, range 42–76) and 39 patients with 18F-FDG-PET/CT-
confirmed normal axillary lymph nodes as a control group (18 women and 21 men; mean
age 64.9 years ± 8.5 range: 47–81) met the criteria for participation in the study.

Among the 31 MCL patients, 95% had a follow-up CT at 3 months, 76% at 6 months,
and 49% at 12 months after having started (immune) chemotherapy +/− 4 weeks.

2 patients (6.5%) of the CR group and 2 patients of the RD group died within the
5-year observation period (13% of the MCL patients).

In the reference group, an average of 3.7 lymph nodes per patient (range 3–4, were
analyzed and an average of 6.4 lymph nodes per patient (range 2–12) in the MCL group. In
total, 745 target lesions were evaluated. In this cohort, 22 patients (71%) were responders
and in complete remission. In comparison, 9 patients (29%) responded to first-line treatment
but relapsed within the 5 year observation period.

Nine patients received radiotherapy (29%).
All patients’ baseline clinical characteristics, histologic subtype, distribution of disease

stage at diagnosis, and treatment received are summarized in Table 1.

Table 1. Baseline demographic, clinical, laboratory, and biological data of the entire MCL cohort and
the reference group.

Characteristic MCL Cohort
(n = 31)

Reference Group
(n = 39)

Age, median (range) 61.5 ± 9.7 years,
(42–76 years)

64.9 ± 8.5 years,
(47–81 years)

Male 26 21

Tissue Sample for histopathological
Diagnosis

Lymph node: 12 patients
Bone marrow: 11 patients

Blood (liquid biopsy): 4 patients
GI tract: 4 patients

Nasal mucosa: 1 patient

PET/CT, clinical, and imaging follow-up
over the next 5 years to confirm normal

lymph node tissue and exclude
hematological disease
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Table 1. Cont.

Characteristic MCL Cohort
(n = 31)

Reference Group
(n = 39)

Ann Arbor

not applicable
Stage I 0 patients
Stage II 2 patients
Stage III 5 patients
Stage IV 25 patients

MIPI (obtained/range) 7 patients (range 3–5.9) not applicable

Radiotherapy 9 patients (29%) not applicable

Therapy Regimen
CHOP ± R alternatingwith DHAP ± R 19 patients (61.3%) not applicable

CHOP ± R alone 10 patients (32.2%)

FC + R 2 patients (6.5%)

CHOP ± R (cyclophosphamide, doxorubicin, vincristine, and rituximab), DHAP± R (dexamethasone, high-dose
cytarabine, cisplatin, and rituximab), R-FC (rituximab, fludarabine, and cyclophosphamide).

3.2. Radiomic Fingerprint of MCL at High Risk of Relapse

Of all features extracted using the designated method, measurements of the central
tendency and dispersion of the radiomic parameter values showed no detectable differ-
ences between the relapse of disease (RD) and the complete remission (CR) group in the
pretherapy and follow-up imaging at 3 months.

After 6 months, however, the four texture features “Uniformity”, “Entropy”, “Skew-
ness” and “Difference Entropy” showed predictive significance for relapse between the
CR group and the RD group (two-sided Mann Whitney U test, p < 0.05, adjusted with
Benjamini-Hochberg).

When these four texture parameters were further evaluated by conducting ROC
analysis, all of them showed area under the curve (AUC) values with statistically significant
differences (defined by p < 0.05). The greatest AUC values showed “Uniformity” (AUC
0.778) and “Entropy” (AUC 0.777). The detailed data are summarized in Table 2.

To assess the clinical benefit, patients were classified above and below the cut-off
values into low- and high-risk groups for relapse. Accuracy (percentage of correctly
classified images as verified histologically), sensitivity, and specificity of the four statistically
significant texture features above were calculated.

“Uniformity” and “Entropy” had the highest discriminatory power to predict relapse
with an optimal cut-off ≤0.0159 for “Uniformity” and a cut-off ≥6.2920 for “Entropy”,
calculated by Youden’s index with 87% sensitivity, 65% specificity, 69% accuracy and a
likelihood-ratio of 2.5 for “Uniformity” and with 80% sensitivity, 72% specificity, 73%
accuracy and a likelihood-ratio of 2.9 for “Entropy”.

Table 2. Parameters evaluated for predictive performance, including morphologic measurements
and radiomic features.

Radiomic Feature AUC Standard Error p-Value 95% CI

Uniformity 0.788 0.063 0.001 0.655/0.902
Entropy 0.777 0.061 0.001 0.658/0.896

Skewness 0.738 0.066 0.004 0.608/0.867
Difference Entropy 0.734 0.071 0.004 0.595/0.874

SAD 0.620 0.072 0.145 0.479/0.760
LAD 0.532 0.083 0.695 0.369/0.695

Volume 0.500 0.084 1.000 0.226/0.664
AUC: area under the curve; CI: asymptotic confidence interval with lower and upper limits;. SAD: short axis;
LAD: long axis.



Cancers 2022, 14, 393 8 of 16

Table 3 highlights all texture features that are strongly correlated to future relapse in
MCL patients. It should be noted that for the texture features “Entropy”, “Skewness” and
“Difference Entropy”, the higher the values, the higher the probability for future relapse.
“Uniformity” behaves exactly the opposite way: lower values represent a higher probability
of future relapse.

Table 3. Sensitivity, specificity, accuracy, and cut-off values of the radiomic features best-suited for
outcome prediction.

Radiomic Feature Sensitivity Specificity Cut-Off for Relapse Accuracy

Uniformity 87 65 ≤0.0159 69
Entropy 80 72 ≥6.2920 73

Skewness 67 77 ≥−0.1890 76
Difference Entropy 80 67 ≥5.2850 69

The ROC curve of the radiomic feature “Uniformity” shows good discrimination be-
tween the “complete remission” and the “relapse of disease” group in contrast to “Volume”
without statistically significant discrimination (see Figure 3).

Figure 3. The receiver operating characteristics (ROC) curve of the feature “Uniformity” yielded an
area under the curve (AUC) of 0.778, whereas “Volume” yielded an AUC of 0.500 for classification
performance of CR and RD (a); ROC curves of the features “Entropy” (AUC 0.777), “Skewness” (AUC
0.738), and “Difference Entropy” (AUC 0.734) (b).

3.3. Radiomic Changes of MCL Lymph Nodes Characteristic for Sustained Remission

To identify potential radiomic features that are characteristic for sustained remission
without significant differences to normal lymph nodes, analyses of MCL patients versus
a reference group with normal axillary lymph nodes were performed by Mann-Whitney-
U-test. The result was considered significant if p-value was <0.01 after applying the
Benjamini-Hochberg correction for multiple testing.

Subgroup analyses between the complete remission and the reference group (CR vs.
REF) and between the relapse of disease and the reference group (RD vs. REF) were carried
out to search for changes in radiomic features during therapy related to normal lymph
nodes and sustained remission, respectively.

For comparability and to minimize disruptive factors relating to topographic sites,
only axillary lymph nodes were selected in both MCL groups and the reference group (MCL
group with 24 lesions, reference group with 146 lesions). The reference group consisted
of more patients in contrast to the MCL group as the number of lymph nodes from each
patient eligible for analysis was much lower and to depict the nature of a normal lymph
node as reliably as possible.



Cancers 2022, 14, 393 9 of 16

Four different periods were analyzed: pretherapy (CRpre, RDpre, and REF), 3 months
follow-up (CR1, RD1, and REF), 6 months follow-up (CR2, RD2, and REF), and 12 months
follow-up (CR3, RD3, and REF) imaging.

All radiomic parameters, including lesion size measurements, showed significant
differences in the pretherapy (CRpre vs. REF and RDpre vs. REF) and the follow-up imaging
at 3 months (CR1 vs. REF and RD1 vs. REF).

A split of both subgroup analyses occurred at the follow-up imaging at 6 months (CR2
vs. REF and RD2 vs. REF): In the analysis between the relapse of disease and the reference
group (RD2 and REF), all radiomic parameters continued to differ significantly, whereas
between the complete remission and the reference group (CR2 vs. REF) the following
parameters showed no longer statistically significant differences suggesting normal lymph
nodes in both groups:

1. Sum average
2. Autocorrelation
3. Joint average
4. Short axis
5. Volume
6. P90th
7. Skewness

This was confirmed at the subsequent follow-up imaging at 12 months with continued
differences in the relapse vs. control (RD3 and REF) group in contrast to the remission vs.
reference (CR2 vs. REF) group analysis (see Figures 4 and 5 for examples).

Figure 4. Grouped boxplots representing changes in specific radiomic parameters of MCL patients
in complete remission (MCL CR) with no longer significant differences to the control cases with
normal lymph nodes at the follow-up imaging at 6 and 12 months, respectively. * represents an
outlier defined as a data point that is located outside 1.5 times the interquartile range above the upper
quartile or below the lower quartile.
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Figure 5. Grouped boxplots representing changes in specific radiomic parameters of MCL patients
with relapse of disease (MCL RD) with continued significant differences to the control cases with
normal lymph nodes at the pretherapy and all follow-up imaging with opposing values compared
to the remission group at the follow-up imaging at 6 and 12 months, respectively. * represents an
outlier defined as a data point that is located outside 1.5 times the interquartile range above the upper
quartile or below the lower quartile.

4. Discussion

This study employed a 3D radiomic analysis approach including first- and second-
order texture features on pretreatment and follow-up routine CT imaging of MCL patients
to investigate radiomic texture changes reflecting temporal tumour heterogeneity. Hetero-
geneity is associated with adverse tumour biology and correlates with molecular subtypes
and clinical outcomes [25,27,45]. Studies prove the quantification of tumour heterogeneity
as a promising tool for monitoring treatment response and clinical outcome [21,28,46].
Radiomics is an innovative field of computer-based research that reveals disease character-
istics from medical images that are not visually seen to non-invasively quantify tumour
heterogeneity for precision medicine [18–20]. Studies have shown that radiomics may
improve the accuracy of diagnosis and prediction to support clinical decision-making
using different imaging techniques in various malignancies, however, there is still limited
evidence in Lymphoma, especially MCL [30,33–35,47–53].

Due to their complex intra- and intertumoural heterogeneity, diagnosis and choice of
treatment are challenging in lymphoma [26,54]. For this reason, it is essential to analyze the
heterogeneity within one type of lymphoma to identify potential image-based biomarkers
for personalized cancer medicine. A few studies explored the potential value of radiomics
as a diagnostic and prognostic tool in lymphoma with controversial results. Recently,
several evaluation criteria and guidelines have been proposed to aid the assessment of
radiomics research [20,55].

According to the ESMO guidelines, there is a consensus to perform a computed
tomography (CT) scan of the neck, thorax, abdomen, and pelvis as initial staging [17].
Having this in mind, we chose CT-based texture analysis as it is easily accessible as a routine
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examination method. By measuring and analyzing target lesions in three dimensions, we
identified several radiomic features to stratify the patient population in low- and high-risk
relapse groups after 12 months with “Uniformity” and “Entropy” having the highest power
to discriminate between MCL at low and high risk of relapse. Interestingly, the conventional
lesion size measurements “Short Axis” and “Long Axis” as well as “Volume” could not
discriminate between the future complete remission and the future relapse of disease group
and were therefore not able to predict patient outcome.

“Entropy” is a radiomic parameter that describes the degree of disorder regarding the
distribution of the grey-level values. The study by Moon et al. demonstrated that “Entropy”
using 18F-FDG-PET/CT based texture analysis correlated with genetic heterogeneity and
mutation burden in lung cancer [56]. Choi et al. used dual-energy CT based radiomics,
including entropy, which strongly correlated with the pathological heterogeneity index
in lung cancer [57]. “Entropy” has been used for prognostic prediction in patients with
high-risk oropharynx carcinoma after chemoradiation, in lung cancer patients after EGFR
tyrosine kinase inhibitor treatment, and has been linked to treatment failure in metastatic
colorectal cancer [36,58,59].

Regarding lymphoma, “Entropy” has been evaluated for outcome prediction in pedi-
atric Hodgkin lymphoma using pretherapy 18F-FDG-PET/CT, and for predicting disease-
free survival and overall survival in aggressive non-Hodgkin’s lymphoma without evidence
being a statistically significant marker in either study [35,39]. However, the recent study by
Mayerhoefer et al. demonstrated the potential value of “Entropy” on 18F-FDG-PET/CT
scans for outcome prediction of MCL patients. This also includes the fact that a higher
cut-off value of entropy represents a higher probability for future relapse in both studies,
which supports the potential and reliability of this biomarker.

However, our study is the first to show that the texture feature “Uniformity” may be
well suited for prognosis estimation in patients with MCL; MCL may be a “genomically un-
stable” disease with (sub)clonal heterogeneity regarding different topographic sites within
an individual and with different modulation of the mutational profile over time [35,60]. No
biomarkers are currently established for the prediction of clinical outcomes less than five
years [13,16].

To the best of our knowledge, our study is the first to evaluate temporal heterogeneity
in MCL patients for risk stratification earlier to the MIPI score used in clinical routine,
which originated from data of 5-year survival. Our results could lead to biomarkers that
enable clinicians to minimize (over)treatment or initiate a closer follow-up. Being able to
assess the course of the disease at multiple sites non-invasively and time points might help
to minimize the number of invasive procedures for histological analysis, the associated
complications, and potential sampling errors due to heterogeneity.

To understand MCL biology and changes of the MCL profile during therapy, high and
low risk MCL groups were compared with normal lymph nodes from the same topographic
site to maximize comparability.

While all radiomic features of the analysis “MCL relapse versus normal lymph nodes”
continued to significantly differ at all follow-up time points, between the complete remis-
sion and the reference group at the 6 month follow-up imaging, however, the parameters
“Short Axis” and “Volume”, the first-order texture features “P90th” and “Skewness” and
the second-order features “Autocorrelation”, “Joint Average” and “Sum Average” showed
no longer statistically significant differences. This was confirmed at the follow-up imaging
at 12 months with continued differences in the relapse vs. control group compared to the
remission vs. reference group analysis. Further prospective studies with a larger cohort
size are necessary. Still, our explorative findings might identify MCL patients with a lower
risk of relapse where aggressive therapy and the resulting side-effects (e.g., secondary
malignoma) could be saved.

Certainly, there are limitations to this study. The most apparent limitations were the
retrospective study design and the moderate cohort size of patients which is caused by the
fact that MCL is a less common lymphoma subtype compared to, for example, Hodgkin’s
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lymphoma with hence smaller patient populations and shorter follow-up periods to obtain
a sufficiently large number of cases with the event of interest. However, 745 lesions were
analyzed as 3D-volumetric whole lesion measurements and by utilizing advanced second-
order radiomic features. A second limitation is the absence of test-retest studies to control
confounding effects, like imaging parameters [61]. As a result, the findings of the paper are
only explorative. Additional comparison with measurements in controls would be desirable
and should be addressed in larger studies on this topic. Moreover, the variability in the
timing of the subsequent imaging might have impacted the study results, as knowingly
treatment-related changes underlie temporal influences. However, we believe that the
findings are of great importance, as they strongly indicate the potential benefits of CT-based
radiomics for MCL treatment. We plan to investigate this topic further and include the now
ethically justified test-retest studies based on these findings. Thirdly, the manual definition
of the tumour contour in the semi-automatic segmentation requires choosing the exact
region of interest which requests proper expertise - a fully automatic segmentation would
be much faster and more reliable.

Given these promising preliminary findings, further work with larger datasets will
analyze the strength of advanced radiomic parameters while adjusting for known predictors
of outcomes to improve clinical outcomes by providing non-invasive, repeatable, and real-
time surveillance to pave the way for personalized medicine, thus improving the standard
of care for lymphoma.

5. Conclusions

Our results suggest that CT-derived 3D radiomics has great potential as a comple-
mentary non-invasive biomarker for early prediction of relapse in MCL. In combination
with the potential to confirm sustained remission, it might assist physicians in clinical
management, especially if it is associated with an automatic classification tool.
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Appendix A

Table A1. Settings of the feature extraction.

Setting Determination

Bin Method FBS
Bin Amount 1
LoG Filter 0
LoG Sigma 1

Matrix Aggregation
Method

3D Average
Directions

Resample Filter 0
Resample Spacing X 1
Resample Spacing Y 1
Resample Spacing Z 0

Second-Order Distance 1
Threshold Filter 0

Threshold Filter Min −1000
Threshold Filter Max 3000

Table A2. List of selected texture features for radiomic analysis.

Radiomic Features of First-Order: Histogram Radiomic Features of Second-Order: Gray
Level Co-Occurrence Matrix (GLCM)

Coefficient Variation Value Angular Second Moment
Entropy Autocorrelation
Kurtosis Contrast

Maximum Histogram Gradient Difference Entropy
Minimum Histogram Gradient Information Correlation Difference

P 10th (10th percentile) Inverse Difference Normalised
P 90th (90th percentile) Joint Average

Quartile Coefficient Dispersion Joint Entropy
Skewness Sum Average

References
1. Hoster, E.; Unterhalt, M.; Woörmann, B.; Duührsen, U.; Metzner, B.; Eimermacher, H.; Neubauer, A.; Wandt, H.; Steinhauer, H.;

Martin, S.; et al. The Addition of Rituximab to First-Line Chemotherapy (R-CHOP) Results in Superior Response Rates, Time to
Treatment Failure and Response Duration in Patients with Advanced Stage Mantle Cell Lymphoma: Long Term Results of a
Randomized GLSG Trial. Blood 2008, 112, 3049. [CrossRef]

2. Ghielmini, M.; Zucca, E. How I treat mantle cell lymphoma. Blood J. Am. Soc. Hematol. 2009, 114, 1469–1476. [CrossRef] [PubMed]
3. Dreyling, M.; Lenz, G.; Hoster, E.; Van Hoof, A.; Gisselbrecht, C.; Schmits, R.; Metzner, B.; Truemper, L.; Reiser, M.; Steinhauer, H.

Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission
significantly prolongs progression-free survival in mantle-cell lymphoma: Results of a prospective randomized trial of the
European MCL Network. Blood 2005, 105, 2677–2684. [PubMed]

4. Hoster, E.; Rosenwald, A.; Berger, F.; Bernd, H.-W.; Hartmann, S.; Loddenkemper, C.; Barth, T.F.; Brousse, N.; Pileri, S.;
Rymkiewicz, G.; et al. Prognostic Value of Ki-67 Index, Cytology, and Growth Pattern in Mantle-Cell Lymphoma: Results from
Randomized Trials of the European Mantle Cell Lymphoma Network. J. Clin. Oncol. 2016, 34, 1386–1394. [CrossRef]

5. Nadeu, F.; Martin-Garcia, D.; Clot, G.; Díaz-Navarro, A.; Duran-Ferrer, M.; Navarro, A.; Vilarrasa-Blasi, R.; Kulis, M.; Royo, R.;
Gutiérrez-Abril, J.; et al. Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell
lymphoma subtypes. Blood 2020, 136, 1419–1432. [CrossRef] [PubMed]

6. Hill, H.A.; Qi, X.; Jain, P.; Nomie, K.; Wang, Y.; Zhou, S.; Wang, M.L. Genetic mutations and features of mantle cell lymphoma: A
systematic review and meta-analysis. Blood Adv. 2020, 4, 2927–2938. [CrossRef]

7. Titov, A.; Zmievskaya, E.; Ganeeva, I.; Valiullina, A.; Petukhov, A.; Rakhmatullina, A.; Miftakhova, R.; Fainshtein, M.; Rizvanov,
A.; Bulatov, E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers 2021, 13, 743. [CrossRef] [PubMed]

8. Kienle, D.; Katzenberger, T.; Ott, G.; Saupe, D.; Benner, A.; Kohlhammer, H.; Barth, T.F.; Höller, S.; Kalla, J.; Rosenwald, A.; et al.
Quantitative Gene Expression Deregulation in Mantle-Cell Lymphoma: Correlation with Clinical and Biologic Factors. J. Clin.
Oncol. 2007, 25, 2770–2777. [CrossRef] [PubMed]

http://doi.org/10.1182/blood.V112.11.3049.3049
http://doi.org/10.1182/blood-2009-02-179739
http://www.ncbi.nlm.nih.gov/pubmed/19556426
http://www.ncbi.nlm.nih.gov/pubmed/15591112
http://doi.org/10.1200/JCO.2015.63.8387
http://doi.org/10.1182/blood.2020005289
http://www.ncbi.nlm.nih.gov/pubmed/32584970
http://doi.org/10.1182/bloodadvances.2019001350
http://doi.org/10.3390/cancers13040743
http://www.ncbi.nlm.nih.gov/pubmed/33670139
http://doi.org/10.1200/JCO.2006.08.7999
http://www.ncbi.nlm.nih.gov/pubmed/17563396


Cancers 2022, 14, 393 14 of 16

9. Rosenwald, A.; Wright, G.; Wiestner, A.; Chan, W.C.; Connors, J.M.; Campo, E.; Gascoyne, R.D.; Grogan, T.M.; Muller-Hermelink,
H.; Smeland, E.B.; et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts
survival in mantle cell lymphoma. Cancer Cell 2003, 3, 185–197. [CrossRef]

10. Salaverria, I.; Zettl, A.; Beà, S.; Moreno, V.; Valls, J.; Hartmann, E.; Ott, G.; Wright, G.; Lopez-Guillermo, A.; Chan, W.C.; et al.
Specific Secondary Genetic Alterations in Mantle Cell Lymphoma Provide Prognostic Information Independent of the Gene
Expression–Based Proliferation Signature. J. Clin. Oncol. 2007, 25, 1216–1222. [CrossRef] [PubMed]

11. Tiemann, M.; Schrader, C.; Klapper, W.; Dreyling, M.H.; Campo, E.; Norton, A.; Berger, F.; Kluin, P.; Ott, G.; Pileri, S.; et al.
Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): A clinicopatho-
logical study from the European MCL Network. Br. J. Haematol. 2005, 131, 29–38. [CrossRef] [PubMed]

12. Swerdlow, S.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Vardiman, J.W. WHO Classification of Tumours of
Haematopoietic and Lymphoid Tissues, 4th ed.; WHO Classification of Tumours; WHO: Geneva, Switzerland, 2017; Volume 2.

13. Hoster, E.; Dreyling, M.; Klapper, W.; Gisselbrecht, C.; Van Hoof, A.; Kluin-Nelemans, J.C.; Pfreundschuh, M.; Reiser, M.; Metzner,
B.; Einsele, H.; et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood 2008, 111,
558–565. [CrossRef]

14. Roschewski, M.; Rossi, D.; Kurtz, D.M.; Alizadeh, A.A.; Wilson, W.H. Circulating Tumor DNA in Lymphoma: Principles and
Future Directions. Blood Cancer Discov. 2021. [CrossRef]

15. Lakhotia, R.; Melani, C.; Pittaluga, S.; Dunleavy, K.; Saba, N.S.; Lucas, R.A.N.; Jacob, M.A.; Yusko, E.; Steinberg, S.M.; Jaffe, E.S.;
et al. Circulating Tumor DNA Dynamics during Therapy Predict Outcomes in Mantle Cell Lymphoma. Blood 2018, 132, 147.
[CrossRef]

16. Dreyling, M.; Thieblemont, C.; Gallamini, A.; Arcaini, L.; Campo, E.; Hermine, O.; Kluin-Nelemans, J.C.; Ladetto, M.; Le Gouill,
S.; Iannitto, E.; et al. ESMO Consensus conferences: Guidelines on malignant lymphoma. Part 2: Marginal zone lymphoma,
mantle cell lymphoma, peripheral T-cell lymphoma. Ann. Oncol. 2013, 24, 857–877. [CrossRef] [PubMed]

17. Dreyling, M.; Campo, E.; Hermine, O.; Jerkeman, M.; le Gouill, S.; Rule, S.; Shpilberg, O.; Walewski, J.; Ladetto, M. Newly
diagnosed and relapsed mantle cell lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann.
Oncol. 2017, 28, iv62–iv71. [CrossRef] [PubMed]

18. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard,
R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer
2012, 48, 441–446. [CrossRef]
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