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Featured Application: The proposed solution provides a quick approach for the annotation of the
necessary training data to create an application-specific machine learning model that can be used
to annotate medical image studies.

Abstract: A major obstacle to the learning-based segmentation of healthy and tumorous brain
tissue is the requirement of having to create a fully labeled training dataset. Obtaining these data
requires tedious and error-prone manual labeling with respect to both tumor and non-tumor areas. To
mitigate this problem, we propose a new method to obtain high-quality classifiers from a dataset
with only small parts of labeled tumor areas. This is achieved by using positive and unlabeled learning
in conjunction with a domain adaptation technique. The proposed approach leverages the tumor
volume, and we show that it can be either derived with simple measures or completely automatic with
a proposed estimation method. While learning from sparse samples allows reducing the necessary
annotation time from 4 h to 5 min, we show that the proposed approach further reduces the necessary
annotation by roughly 50% while maintaining comparative accuracies compared to traditionally
trained classifiers with this approach.

Keywords: image segmentation; tumor segmentation; machine learning; random forests; MRI;
PU-learning; semi-supervised learning; weak annotations; sparse annotation; weak supervision

1. Introduction

The identification or semantic segmentation of regions of interest (ROIs) in medical images
is a common prerequisite for image-based medical studies. The manual creation of such
segmentation is often not only time- and cost-intensive but also subject to intra- and inter-rater
variability—which drives a need for automatic segmentation methods [1–3]. However, there
is a huge range of possible segmentation tasks that differ not only by the actual target
structure, i.e., the organ or pathology, but also in the definition of boundaries as well
as the imaging modality or contrast. Consequently, existing automatic approaches often
need to be adapted to individual use-cases, especially in the case of Magnetic Resonance
Imaging (MRI). The high variability of this imaging modality with the possibility for
individual selection and configurations of MRI sequences together with the manufacturer
and device-specific imaging must be accounted for to obtain robust solutions [4,5].
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Machine-learning-based approaches are currently considered the state-of-the-art solu-
tion for medical image segmentation as they combine strong performance and a straight-
forward adaptation to new tasks. Solutions such as the deep-learning-based nn-Unet have
been successfully applied to a wide range of different problems by adapting the training
data to each task [6–8]. However, annotating a training dataset can already require signifi-
cant efforts that might not be justified for a single application. A solution to this challenge is
the use of weakly supervised learning, i.e., not using a direct one-to-one annotation for all
observations [9,10]. Different approaches have been proposed to reduce the annotation load
by employing only incomplete or sparse annotations during the training process [11,12].
This increases the annotation speed and allows the usage of learning-based solutions even
for single-time usage.

A limitation of weak supervision with sparse annotations is the missing implicit
information about background tissue. If the complete region of interest is segmented,
anything not annotated can be considered as the background or the negative class. This
is not true if the annotation is incomplete as both positive and negative parts are not
annotated, and approaches such as [11] required the annotation of both background and
foreground regions. We want to improve this situation by only allowing the annotation of
the region of interest, which leads to a situation that resembles the learning from positive
and unlabeled data scenarios (PU-learning). Here, the majority of data are unlabeled,
and only a few samples from the positive or foreground class are annotated. Different
deep-learning based approaches using PU-learning has been proposed for medical imaging
analysis tasks [13,14] so far. While deep-learning and the included feature learning is
particularly beneficial for large datasets [15], image-based medical studies are often based
on small datasets [16]. This creates a need for data-efficient learning. Using traditional
machine learning with either hand-crafted or pretrained features can be a solution to
this challenge. We, therefore, investigated the combination of PU-learning and random-
forest-based image segmentation, as this type of classifier has shown to be efficient for
medical image segmentation [17–22]. As a foundation, the DALSA (Domain Adaptation
for Learning from Sparse Annotations) algorithm is used, providing an intuitive approach
for the incorporation of sparse annotations and is already being applied to small imaging
datasets [23,24]. We extended this approach to learn from tumorous annotations only
and avoiding the creation of labels for the background tissue. The segmentation of brain
tumor was selected as an evaluation task with tumorous tissues being the foreground or
the positive class and unaffected/healthy tissue being the background/negative class. Our
main contributions are as follows:

• A random-forest based PU-learning algorithm for medical image data segmentation;
• A class-prior estimation algorithm with integrated domain-shift correction;
• A image-wise batch-mode for PU-learning;
• A study-based assessment of different tumor volume estimation approaches.

2. Methods

A machine-learning-based workflow for automatic medical image segmentation is
proposed based on sparse and positive-only labels. The approach is based on the DALSA
approach proposed by [12]. Similarly to this approach, random forests are chosen as
classifiers due to their successful application in medical image segmentation in previous
studies. Figure 1 provides an overview over the proposed workflow that is evaluated in
the case of tumor segmentation.

The basic approach is a voxel-wise classification approach. Each voxel is represented
by a feature vector, x. Using a dedicated training dataset, a random forest classifier is
trained to classify new voxels into different tissue types. As we build our work on the
DALSA approach, the training data are only sparsely annotated (cf. Section 2.1), and
all labeled voxels are used for the training process. As a consequence of this annotation
process, the training must be corrected to account for and avoid a bias, which is achieved
by using voxel-wise weights (cf. Section 2.4). We extend this approach by only allowing the
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use of positive annotations during training. This requires an additional correction weight,
which is calculated based on the ratio of the available classes (cf. Section 2.2). Consequently,
the class ratio must be estimated (cf. Section 2.3). Neither the original DALSA nor our
approach requires adaptations during the test routine. Instead, segmentations are created
simply by classifying all voxels using the previously trained random forest classifier.

Figure 1. Training workflow of the proposed segmentation algorithm with sparse positive annotations
only. Except for step 1, all steps can be fully automated. The trained classifier is identical to a classifier
trained with conventional annotations and can be used without any manual interaction.

2.1. Labeling and Preprocessing

The annotation process is sped up by allowing the annotation of only small portions
of the image. There are no hard limitations regarding size, the number of different areas, or
location as long as the selected areas are representative and cover the foreground tissue. In
the given case, the followiing methods were attempted: (1) all appearances of the tumorous
tissue were covered; (2) border voxels are included if they clearly belong to tumors; (3) no
unclear areas are marked. There is no spacial limitations about the annotated areas but they
are typically located only in one or two slices of each 3D volume. Figure 2 shows examples
of the obtained annotations.

In contrast to the annotations used in [12], the creation of background (healthy)
annotations was omitted. As a consequence, the training data contained only tumorous
labeled (positive training samples P with y = 1) and unlabeled voxels (unlabeled training
samples U ), which could be either healthy or tumorous tissue. Therefore, traditional semi-
supervised learning methods, such as [25], could not be used as they would also require
some labeled samples of healthy tissue, i.e., negative training samples (y = 0). Instead, a
specific approach for learning from such weak annotations is required.

Figure 2. Four example slices from volumes of the in-house dataset that contain sparse and positive
annotations. Most other slices of the volumes are annotation-free; at most one or two contain smaller
additional annotations. The non-affected tissue is not annotated.
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2.2. Learning from Positive Samples

The underlying idea of the proposed approach is to use the proxy task for predicting
the availability of a label for a data point and adapting it to the given classification task.
A classifier is trained to infer the probability of whether a data point is labeled (s = 1) or
not (s = 0). Elkan et al. showed that it is possible to convert this training by introducing
class-costs during the training so that the final classifier predicts a given sample label y
instead of labeling property s [26]. During the training of a cost-based classifiers, each class
is assigned a specific cost for miss-classification, providing an effective method to control
the class sensitivity of a classifier [27].

The idea behind this approach is visualized in Figure 3 for an idealistic case with clearly
separable classes. As only positive samples are annotated, the probability of annotation
should be zero for negative samples and corresponds to the fraction of annotated positive
samples for positive samples. If the importance of annotated samples increased so that the
increased number of annotated samples matches the overall number of positive samples
in the image, the probabilities match the class probability. This is of course a simplified
example, assuming clear separability between the classes. However, the same underlying
idea also works for non-trivial problems.

(a) (b) (c)

Figure 3. Schematic explanation of the idea behind weight-based PU-learning. (a) Original image: The
bright and dark pixels of the image represent its two classes. (b) Original image with segmentation
overlayed: The green pixels show that the sparsely annotated areas are the sparse annotations.
(c) Probability of the green class: The probability of annotations given for different preconditions. If
the weight for annotated pixels artificially increased, the annotation probability matches the original
class probability.

For PU-learning, costs factors cP and cU of the positive and the unlabeled class depend
on the class prior π = P(y = 1 | U ) as well as the positive sampling rate η = n

n+n′ with n
and n′ being the numbers of labeled and unlabeled voxels, respectively. They are chosen
in a way that the classification error for the classifier is minimized for the estimation of
observation labels. We used, in our experiments, costs similar to the ones proposed by
Plessis et al., while accounting for the greedy optimization strategy of random forests and
the convex loss function [28].

cP =
4 · π

η
; cU =

1
1− η

(1)

A common assumption in PU-learning is that the class and sampling ratios are constant
for all observations, and as a consequence, costs are calculated for all samples of one class.
We call this mode the ’global mode’, reflecting the fact the weights are calculated globally
for all samples. However, the visible fraction of the tissue type in a image can be variable,
and as a consequence, we interpret each image as an individual group of observations or
batch. This allows the calculation of individual weights per image, meaning that the class’
cost depends on the image and not on the entire training dataset; we denote this approach
as the ’batch mode’.

2.3. Estimating Missing Class Priors π

Usually, the ratio of foreground and background or positive and negative is unknown
and needs to be either manually or automatic heuristically estimated. For some medical
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tasks, manual estimation procedures exist while they are not known to other tasks. We
therefore evaluated both a manual and an automatic estimation of the class prior. For
this study, the class prior corresponds to the ratio of gross tumor volume (GTV) to the
volume of healthy tissue in the unlabeled data, which can be derived from a completely
segmentation of tumorous tissue using the ratio of GTV-labeled voxels vs. other voxels.
However, it is not possible to use this approach when given only incomplete annotation,
and other methods are needed to estimate π.

The automatic estimation of π: π might be estimated from the data assuming that
positive and negative data are different enough and that the positive samples are drawn
independently and are identically distributed (i.i.d). Du Plessis et al. proposed estimating
this ratio by finding the overall class prior θ = P(y = 1) that reduces the difference between
the two distributions θ · P(x | s = 1) and P(x) [29]. The intuition behind this is that parts of
the original distribution that are caused by the positive samples will be matched, while the
other parts cannot be matched. This concept is schematically illustrated in Figure 4a,b.

Du Plessis et al. suggest using Pearson divergence (PE) to measure the similarity
of both distributions and to derive an analytic solution for θ. We refer to this method as
‘Pearson Divergence Prior Estimation’ (PEPE) and calculate π based on it as follows.

π =
θ − P(s = 1)
1− P(s = 1)

. (2)

An underlying assumption for PEPE is that positive samples are drawn i.i.d [29].
However, the manual sparse annotation process always nearly leads to a sampling bias
that might affect the performance of the estimation algorithm (cf. Figure 4b). We therefore
propose to include a correction of the sampling bias by using importance weighting [30].
Here, the idea is to weight each sample with an sample-dependent weight factors so that
the corrected distribution matches the original distributions from which the data have been
drawn. To achieve this, each sample x is weighted accordingly to the following ratio (cf.
Equation (5)):

w(x) =
PTest(x)

PTraining(x)
(3)

by correcting the positive class estimation according to the following.

P(x | s = 1) =
w(x)
| w | · n · PP (x | s = 1) (4)

The weighting factor w(x) must be estimated since the computational estimation of
a distribution is challenging and neither PTest(x) nor PTraining(x) are known. We use the
estimation approach that is also used for the non-i.i.d correction and that is described in
Section 2.4 and call this method the ‘Domain Adapted PEPE’ (DA-PEPE).

Manual estimation of π: A manual estimation of π is more labor-intensive than
an algorithmic estimation and requires an application-specific approach. However, the
potentially more accurate estimation and the reduced likelihood for outliers can lead to
more accurate classifiers. We, therefore, evaluated two manual estimations of π for the
given application of brain tumor segmentation based on estimations of the tumor volume
with simple manual measurements inspired by common clinical approaches. For the first
method, the area of the largest circle fully within tumor Ac is multiplied by the height of
tumor hTumors. The tumor’s height is obtained by multiplying the slices containing tumors
with the slice’s thickness. For the second method, the largest possible diameter, la, and the
largest perpendicular diameter within the same slice, lb, were measured, and the tumor
volume was estimated by V = 0.5 · la · lb · hTumor.



Appl. Sci. 2022, 12, 10763 6 of 14

P(x | s=1)

P(x | y=1)

P(x | y=0)

x
P

(x
)

(a) Initial Situation

θ*P(x | s=1)

x

P
(x

)

(b) PEPE

θ*w(x)*P(x | s=1)

x
P

(x
)

(c) DA-PEPE

Figure 4. Schematic depiction PEPE and DA-PEPE (cf Section 2.2). (a) Initial situation: Colored
area represents the density of the unlabeled data, with blue representing the positive data and gray
representing the negative. The density of the sampled data is represented by the bold red line.
(b) PEPE: θ is chosen to minimize the distribution of annotated and unlabeled data. (c) DA-PEPE:
Applying domain adaptation allows a more accurate estimation of θ in the case of sampling bias.

2.4. Correction for Non-i.i.d Data

The small and incomplete image annotations covering the image’s content usually are
not in an i.i.d. fashion. Consequently, the annotated training and test data follow different
distributions PTraining(x) and PTest(x), leading to sub-optimal decision boundaries. This
situation, referred to as a sampling bias, leads to a reduced performance of the so-trained
classifier [12]. Based on the original DALSA approach, we are correcting this sampling bias
by weighting each training point with w(x) [12,31]. The weights are chosen to ensure that
training and test distribution are equal.

PTest(x) = w(x) · PTraining(x) (5)

The estimation of w is a non-trivial task that requires the estimation of two density
distributions. A possibility to surrogate the direct estimation of the distributions is to train
a probabilistic classifier to differentiate between annotated and non-annotated data. The
inferred probability for an observation to be annotated, p̂(z == 1|x), can then be used to
estimate the correct weighting factor by using the following.

ŵ(x) =
1− p̂(z == 1|x)

p̂(z == 1|x) (6)

If a logistic regression classifier with x̂ = 1
1+e−θ(x) is used, this formula can be further

simplified into a numerically more stable version. Using the learned parameter of the
logistic regression θ(x), it then becomes the following.

ŵ(x) = e−θ(x) . (7)

2.5. Benchmark Methods

To evaluate our method, we implemented two baseline methods. First, we trained the
classifier using complete segmentation (Complete), as it is usually performed. As a second
method, we trained the classifier not only on positive but also on negative samples (SPN)
and corrected for occurring sampling errors using domain adaptations [12].
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3. Experiments and Results

Two datasets have been used for the experiments. An explorative analysis was con-
ducted using an in-house dataset of 19 patients with glioblastoma. For this in-house dataset,
T1 contrast-enhanced, T2 Flair- and diffusion-tensor (DTI)-MRI images are available for
each subject. More details on imaging parameters are provided in [12]. The images were
rigidly registered to the Flair image and resampled to a common in-plane spacing of
1 mm × 1 mm. A brainmask was extracted semi-automatically and T1 and T2 images were
normalized to a standard deviation of 1 and a mode of 0. The image intensity at each voxel
and different DTI-derived measures were used as features corresponding to the approach
described in [12].

Trained experts manually segmented the GTV and used images from earlier or later
timepoints for the iterative improvement of segmentations. This careful labeling process
of the ground truth took more than four hours per subject. In addition to the small and
only positive (tumorous) regions, a trained radiologist also created small annotations of
healthy tissue (negative regions) to allow training the benchmark method. The creation of
the small samples for all classes took less than 5 min per patient. The sparse annotations
covered 0.25%± 0.15% of the complete brain volume and 2.6%± 1.5% of tumorous tissues.
Of the sparse annotated voxels, 55.1%± 16.5% belonged to negative samples.

In addition to this, the BraTS 2013 dataset [32] was used for validation in an indepen-
dent cohort. To avoid overengineering, only final experiments were conducted using the
BraTS dataset. Thus, if not stated otherwise, the in-house dataset was used.

The BraTS 2013 dataset was preprocessed accordingly to [17] as a strong baseline
approach. The images were normalized using histogram matching based on a 3D-Slicer [33].
The contrast of an arbitary subject (HG0001) was used as the reference. All voxels with
intensity below the mean image intensity were discarged as background images. Follwoing
this step, all images were normalized to the mean intensity of the CSF. For this, CSF was
semiautomatically segmented in all subjects. The original four modalities were extended to
ten images per subject by subtracting each contrsat from the others. For each image in the
stack, the Laplacian of the Gaussian (scale 1.0) of the structure’s tensor eigenvalues (scale
1.6) and the Hessian of Gaussian eigenvalues (scale 1.6) were calculated and used together
with the pure intensities as features.

3.1. Estimation of π

The estimation of the π is a crucial step in the proposed approach. We therefore
evaluated the quality of the two manual and two algorithmic estimation methods by
comparing them to the class prior for each patient that was estimated on the basis of the
reference segmentation (Table 1). The algorithmic estimation, which requires no manual
interaction, was less accurate and underestimated the tumor prior. Both algorithmic
approaches produced one outlier for the same patient. A visual inspection of the images
of the corresponding subject revealed a low contrast between tumorous to healthy tissues.
Without this outlier, Pearson’s correlation coefficients between the estimated and reference
class prior were 0.761 and 0.690 for PEPE and DA-PEPE respectively. We kept the outlier
within our training base for further experiments.

We analyzed the influence of π on the final segmentation result by running multiple
leave-one-out experiments with artificially falsified class priors both for the global and
batch mode (Figure 5). In general, both modes were stable against incorrectly estimated π
and were more robust against overestimation than underestimation.
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Table 1. Estimations of class prior π and the correlation between the reference ratio and the estimation.

Real Ratio Manual 1 Manual 2 PEPE DA-PEPE

Mean Tumor Volume 10.5% 11.1% 11.7% 7.6% 8.5%
Mean absolute error 0% 16.8% 20.1% 51.2% 55.6%
Pearson Correlation 1 0.95 0.95 0.41 0.34

Labeling Time 4 h 1 min 1 min 0 0

Figure 5. Results of leave-one-out experiments with artificially falsified π. All experiments are
conducted with the same random forest tree depth (Global 5 and Batched 4).

3.2. Segmentation Results

We ran leave-one-out experiments with all 19 subjects to evaluate our method with
respect to benchmark methods. We also compared the proposed batched mode vs. the
global mode. We chose the well-known DICE score [34] as the metric for the evaluation of
the classifier’s results to ensure comparability with other studies. Following the reasoning
of Menze et al., we excluded distance measures [32]. Figure 6 shows the obtained DICE
score for each method.
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Figure 6. DICE scores for different leave-one-out configurations. All experiments except ’complete’
used importance weighting. The horizontal dashed line shows the median of the current state-of-the-
art method.

Given reference π, the proposed workflow yielded classifiers that are comparable
to learning from positive and negative samples (SPN). Compared to the reference-prior-
based classifier, the results improved when manual estimation was used in the batch mode.
Generally, batch-mode training provided better results than global mode training. There
was a small drop in the quality of results when using the automated estimation of π.
However, the retrieved DICE scores were still comparable to the state-of-the-art methods
that used both positive and negative labels.

DA-PEPE provides slightly better results than PEPE even though it has a less favorable
correlation coefficient and a higher mean error. We think that this is because it overestimated
low π and generally performed better for high π. Since the proposed workflow is less
sensitive to overestimation, the so-made estimation error might lead to improved results.
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3.3. Validation on the Second Dataset

To validate the proposed approach on a independent dataset the proposed PU-learning
strategy was tested on the BraTS 2013 dataset. Sparse positive annotations were created,
corresponding to the ones on the in-house dataset, and the DA-PEPE approach was used
to estimate π. As the dataset contains multiple labels, we used a multi-class classification,
also showing that the proposed approach can be used with more than two classes. We
therefore created only annotations of affected tissue, and the largest type of non-affected
tissue (background) was left unannotated.

The obtained mean DICE score from leave-one-out experiments is 78.7%± 15.7%, and
the sensitivity and specificity are 78.3%± 15.9% and 98.8%± 1.2%, respectively. These
results are inline with the expected results from other experiments and could be further
improved using more sophisticated features and additional post-processing [17]. Figure 7
shows some examples of the obtained segmentation, both as two and multiclass results.
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Figure 7. Cont.
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Figure 7. Example axial and coronal (HG 006) slices from the validation set u(BraTS 2013 dataset)
using the proposed PU-learning method. The colour coding is as follows: ‘yellow’: edema; ‘red’:
enhancing tumour; ‘green’: non-enhancing tumour; ‘blue’: necrosis. The subject name is identical to
the identifier within the original training dataset.

4. Discussion

We showed that the proposed approach allows for the training of an effective tumor
segmentation algorithm from small and only positive samples. The approach dramatically
reduces the labeling time when compared to the traditional workflow with training on
complete segmentations. The results achieved by such a classifier are comparable or better
than those achieved by learning from sparse positive and negative samples (SPN), while
the required labeling time is further reduced—for our experiments, by nearly 50%. This
will enable the creation and regular update of much larger training sets than previously
employed, making it much easier to directly integrate the approach in a clinical work-
flow and to cover different scanner hardware, modalities, protocols, and even different
clinical applications.

Using a cost-based approach allows the combination of our method with most learning-
based approaches, making it more general than previous methods such as [35]. Never-
theless, there are some difficulties in incorporating spacial priors from an atlas. However,
instead of using a spacial prior, a tissue class prior can be derived for each voxel and a
general tumor probability can be used for post-processing the segmentation. This allows
the use of most information encoded within an atlas, although there are enough methods
that obtain good results without using this information (for example, [17,36]).

For this paper, we purposely used simple features and classifiers in order to deflect
attention to such details. However, given the flexibility of the proposed approach with the
cost-based classifier as the only real requirement, the performance can be easily improved.
For example, by using more advanced technology stacks, including the usage of deep learn-
ing. This could be by using learned features from a pretrained network [37], a combination
of forest and deep learning [38], or a cost-sensitive deep segmentation network [39]. These
changes will not affect the ability of the baseline approach proposed here to be trained
from sparse and positive-only annotations and can improve the performance’s results
significantly.

One benefit of PU-learning is that the estimation of the tissue ratios can be obtained
with multiple approaches. The best approach depends on the use-case; for example, if the
true tissue ratio is known from a previous study or a post-surgical histological measurement,
those could be used without any additional overhead. However, even if such accurate
measures are unavailable, PU-learning can still be used, as our experiments show that it
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is robust even with an estimation error of 20%, which allows the usage of quick but less
accurate estimation methods for the reduction in annotation loads.

The best manual estimation of tissue ratios depends on the actual task on hand. In
our experiments, these measures showed a tendency to overestimate the tumor volume
by 0.6 and 1.2 percentage points (cf. Table 1), which is in line with other findings suggest-
ing a slight overestimation of tumors using simple measurements [40]. However, these
approaches were shown to be sufficiently accurate and might already be assessed in clinical
routines [41], thus offering a good alternative. However, there might be cases when manual
estimations are unavailable and cannot simply be created, either because of time and cost
restrictions or because it is simple not possible for the given task. In such settings, the
heuristic estimation of the tumor volume is a possible alternative. While the accuracy of
such estimations is lower than the accuracy of manual estimations, the performance is still
sufficient for training high-quality classifiers with performances that are on par with those
of other solutions (cf. Figure 6. This is true especially if the proposed batch mode is used
for the training.

The labeling process—an important part of this method—raises questions about the
observer dependency of the process, the best amount of data to be labeled, and the best
location for the labels. Preliminary results, which would exceed the scope of this work,
indicate that the method is generally robust against different labeling. Further efforts will
be undertaken in the future to investigate this in more detail.

The results on the external validation set also showed that it is possible to extend
PU-learning to a multi-class setting by leaving only one class aside. Similarly to a two-class
problem, the proportion of each class is then estimated either manually or heuristically, and
the classifiers are corrected accordingly. The flexibility by this process allows the adaptation
of the proposed technique to a wide range of different tasks.

The recent rise of radiomics drives additional needs for image segmentations. The
segmentation of the region of interest is a major step for this approach. While manual
segmentation is possible, it is known that the inter-rater variability of such approaches
has a major impact on the quality and reliability of the radiomics study [42–45]. While
there are methods to control for the influence of rater variability from the segmentations
[45,46], the usage of automatic segmentations is often considered better as the transfer
to other clinical settings is more straightforward [47]. While there are some studies that
make use of automatic segmentations [48,49], this is not always true. We assume that the
comparatively small size of many studies [16,50,51] hinders the researcher in investing
additional efforts. However, given the original capabilities of the baseline, we expect that
our solution can provide an easy approach to develop automatic segmentation solutions
even with limited data.

Our solution requires less annotated data compared to traditional semi-supervised
learning methods. These methods usually require the annotation of both healthy and
tumorous tissue, which might be a problem for crowd-sourcing-based labeling. Having
two different tasks either doubles the number of tasks that needs to be solved or requires
switching the current label. Employing a weak supervision with PU-learning, this situation
is avoided with our method. This might be particularly useful in settings where switching
the annotation is costly (for example, if crowd-sourcing is used [52,53]). In this setting, the
simplified annotation can be even more beneficial, as the non-expert crowd annotator is not
required to fully comprehend all details of the image and can accomplish each task faster,
which further reduces the cost.

This research is an important step towards fast annotations for automatic studies.
This allows leveraging the benefits of automatic segmentation approaches even in smaller
medical studies, which will no longer need to depend on manual segmentation. This
improves the reliability and reproducibility of such studies that can build on this solution.
However, there is still room for further improvements on this topic: for example, by
incorporating deep-learning-based approaches to the suggested solutions or by evaluating
it usefulness directly in a medical study.
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Overall, the proposed workflow can reduce and simplify the labeling effort in the field
of automatic tumor segmentation. This is an important step in order to be able to include
tumor segmentation into a general clinical workflow.
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PEPE Pearson divergence prior estimation;
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