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Simple Summary: Testicular germ cell tumour (TGCT) is the most common solid cancer in men below
40. The majority present with disease confined to the testis (stage 1), with its primary treatment being
radical orchiectomy. Despite the multiple options for managing stage 1 tumours, optimal management
is controversial, with further treatment options including active surveillance, chemotherapy and
retroperitoneal lymph node dissection or low dose radiotherapy of the paraaortic region. In this study,
the authors incorporated quantitative imaging features and clinical risk factors to stratify patients
according to lymph node metastases, thus promoting precision imaging in clinical oncology.

Abstract: Accurate retroperitoneal lymph node metastasis (LNM) prediction in early-stage testicular
germ cell tumours (TGCTs) harbours the potential to significantly reduce over- or undertreatment
and treatment-related morbidity in this group of young patients as an important survivorship
imperative. We investigated the role of computed tomography (CT) radiomics models integrating
clinical predictors for the individualised prediction of LNM in early-stage TGCT. Ninety-one patients
with surgically proven testicular germ cell tumours and contrast-enhanced CT were included in this
retrospective study. Dedicated radiomics software was used to segment 273 retroperitoneal lymph
nodes and extract features. After feature selection, radiomics-based machine learning models were
developed to predict LN metastasis. The robustness of the procedure was controlled by 10-fold
cross-validation. Using multivariable logistic regression modelling, we developed three prediction
models: a radiomics-only model, a clinical-only model, and a combined radiomics–clinical model.
The models’ performances were evaluated using the area under the receiver operating characteristic
curve (AUC). Finally, decision curve analysis was performed to estimate the clinical usefulness of
the predictive model. The radiomics-only model for predicting lymph node metastasis reached a
greater discrimination power than the clinical-only model, with an AUC of 0.87 (±0.04; 95% CI)
vs. 0.75 (±0.08; 95% CI) in our study cohort. The combined model integrating clinical risk factors
and selected radiomics features outperformed the clinical-only and the radiomics-only prediction
models, and showed good discrimination with an area under the curve of 0.89 (±0.03; 95% CI). The
decision curve analysis demonstrated the clinical usefulness of our proposed combined model. The
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presented combined CT-based radiomics–clinical model represents an exciting non-invasive tool for
individualised LN metastasis prediction in testicular germ cell tumours. Multi-centre validation is
required to generate high-quality evidence for its clinical application.

Keywords: radiomics signature; prediction; machine learning; testicular cancer; personalised
oncology; precision imaging

1. Introduction

Testicular germ cell tumours (TGCTs) are the most common malignancy among men
aged 15–40 [1,2]. Its characteristic patient population and high cure rate make this disease
unique, constituting one of the few success stories in cancer care [3,4]. Besides cure,
reducing the amount of therapy-related acute and long-term toxicity is the goal of care
due to the young age of the TGCT patients and the long life expectancy following curative
therapy [5–10]. The main risk factors for TGCTs include cryptorchidism, family or personal
history of TGCT and contact with organochlorine compounds [11,12]. TGCTs are classified
histologically into seminoma and non-seminoma, including pure non-seminoma and mixed
germ cell tumours, with seminoma accounting for approximately 55% of all cases with
an average age at diagnosis in the fourth decade of life, about eight years later than non-
seminoma [12]. TGCT are diagnosed by physical examination, testicular ultrasound and
specific tumour markers, such as alpha-fetoprotein (AFP), beta-hCG (β-hCG) and lactate
dehydrogenase (LDH) [13,14].

Ninety-five percent of all metastases from TGCTs involve the ipsilateral retroperitoneal
lymph nodes. Thus the present German guidelines recommend that in early-stage semi-
noma, patients with certain criteria, such as a tumour with a diameter >4 cm, an adjuvant
therapy be applied, consisting of either one to two cycles of carboplatin or radiotherapy
of the paraaortic region with 20 Gy [15]. However, retroperitoneal lymph node dissection
(RPLND) is the only treatment modality to correctly stage the nodal status of early testicular
cancer. Unfortunately, due to the short- and long-term complications, such as retrograde
ejaculation, the implementation of adjuvant chemotherapy regimens, and the excellent
prognosis with surveillance approaches in stage I disease, RPLND plays a negligible role
as the primary treatment of early-stage TGCTs [16]. The most commonly used tumour
markers, AFP, β-HCG, and LDH, are not very specific and are present in only about 60% of
men with testicular cancer [14,17]. Worse, some conditions lead to false-positive elevation
of testicular markers, such as liver disease or genetic reasons [18].

Due to its exceptional spatial resolution, CT imaging is regarded as well suited for
identifying pathologically enlarged lymph nodes; in clinical practice, a short axis larger
than 7–8 mm is considered pathologic (AUC with a sensitivity and specificity approaching
70%) [19]. Nonetheless, CT cannot distinguish between affected and normal lymph nodes
in small lymph nodes [20].

Suboptimal therapeutical management, however, jeopardises the excellent outcomes
of TGCT patients, with either over- or undertreatment being equally harmful.

Advanced medical imaging integrating high-resolution image acquisition, powerful
computational technologies and artificial intelligence (AI)-based image analysis enabled
researchers to develop the field of radiomics [21,22]. This way, data characterisation
algorithms can detect specific diagnostic image patterns and convert them into quantitative
mineable “big data” [23,24].

In the era of precision medicine, AI-based image analysis addresses the challenges of
biopsy with the advantages of being non-invasive, repeatable, and applicable to hard-to-
reach lesions within the body by analysing texture features of a region of interest (ROI) that
reflect tumour physiology and radiologic phenotype according to current data [25,26].

Many studies have evaluated the diagnostic potential of radiomics for classifying
lymph nodes in different cancer types, including gastric, rectal, and bladder cancer,
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with promising results [27–30]. AI-based advanced imaging could provide new imaging
biomarkers or radiomic signatures to combat the urgent problem of under- or overtreatment
of TGCT patients.

Our study is the first to investigate computed tomography (CT) radiomics models
integrating clinical risk factors for the individualised prediction of lymph node metastasis
in patients with early-stage TGCT, thus promoting precision imaging in clinical oncology.

Based on the findings above, we hypothesised that:

(1) The radiomics features extracted from retroperitoneal lymph nodes might potentially
predict TGCT recurrence.

(2) Integrating important clinical factors, including age, histotype, AFP, ß-HCG, and BMI,
into a combined clinical-radiomics model might add an incremental value to predict
TGCT recurrence.

2. Materials and Methods
2.1. Patients and Imaging Protocol

Ninety-one treatment-naive patients with surgically proven stage I TGCT who under-
went contrast-enhanced CT scans at our institution between January 2006 and December
2016 were included in this retrospective study.

Patient demographic, laboratory and clinical data were collected through a careful
review of electronic medical records and the radiology information system. Exclusion
criteria included incomplete clinical or imaging records and no histologic confirmation
after surgery.

The primary endpoint of our study was retroperitoneal LN metastases from TGCT
based on subsequent clinical and imaging examinations determined from records in elec-
tronic medical records.

Of the 167 patients originally screened, 91 could be included in the final study cohort
according to the selection criteria. The patients in the final study cohort were followed up
for at least six years after orchiectomy.

A flowchart of the cohort selection is shown in Figure 1.
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CT scans were conducted before orchiectomy (+/−2 weeks) (mean time 3 ± 11 days,
range 2–24) to determine disease status. Images were obtained as part of the routine staging
on the Philips Brilliance CT 16-channel multi-row detector CT or Philips Brilliance CT
64-channel scanner (Philips Healthcare, Cleveland, OH, USA). CT scans were performed
using acquisition and reconstruction parameters by the standard protocol after intravenous
contrast injection of Ultravist® 370 (Bayer Schering Pharma, Berlin, Germany) at a weight-
matched dose with a delay of 70–80 s for the portovenous phase of the chest and abdomen
(tube voltage 100 kV–120 kV with automatically calculated tube current, matrix of 512 ×
512, in-plane resolution between 0.62 × 0.62 mm and 0.86 × 0.86 mm, section thickness of
2.0–5.0 mm). Using two different CT scanners, a heterogeneous data set was generated to
represent a routine clinical scenario as well as possible.

2.2. Segmentation and Radiomic Feature Extraction

First introduced by Haralick et al. in 1973 [31], image feature extraction, such as
histogram features or features from the co-occurrence matrix, has demonstrated eminent
potential in various questions in different cancers [22,32].

Three-dimensional region-of-interest segmentation, texture analysis, and feature ex-
traction were conducted using mint Lesion™ software (version 3.8.4, mint Medical GmbH,
Heidelberg, Germany). Details of the extraction settings are given in Appendix A, Table A1.
The schematic diagram for ROI segmentation and feature extraction for model development
is shown in Figure 2.
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Figure 2. The schematic diagram for ROI segmentation and feature extraction for model development.
Details regarding the extraction settings are listed in Appendix A, Table A1.

Two board-certified radiologists, with over 10 years of experience in oncologic imaging
and over 8 years’ experience in texture analysis, analysed all images.

Three retroperitoneal lymph nodes along the infrarenal aorta were segmented per
patient, resulting in 273 eligible samples randomly divided into a training set (n = 191) and
a testing set (n = 82) at a ratio of 70:30.

Radiomic features were quantified regarding their distinctive pattern of grey lev-
els within the ROI using texture feature descriptors according to the Image Biomarker
Standardization Initiative (IBSI) guidelines [24].
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Eighty-five imaging features were extracted from each ROI: features related to the
3D size and shape, first-order statistics characterising the distribution of voxel intensities
within the selected region, and features relating to the grey-level co-occurrence matrix (see
Tables A2 and A3 in Appendix A).

2.3. Feature Selection and Development of the Predictive Radiomics Model

Analogous to other data mining applications, radiomics extracts many texture features
from the regions of interest [33].

For more generalisable, powerful, and faster modelling and reduced overfitting, we
selected optimal features using the logistic regression model with the smallest absolute
shrinkage and the selection operator (lasso) [34,35]. Each feature had an associated covariate
coefficient. With a continuous increase in λ-value, some regression coefficients continuously
declined and tended to 0. The remaining variables with non-zero values were chosen as
the best-performing predictors. The optimal hyperparameter λ = 0.001 was found by grid
search [36,37].

Multivariable logistic regression developed the most appropriate radiomics model by
using the selected radiomic features as the input variables to classify between the binary
output variables.

Patients with LN metastases within the 6-year observation period were assigned to
the high-risk group, whereas those with complete remission were classified in the low-risk
group.

To handle the imbalance between LN metastases (negative vs. positive, 81/10) and
avoid bias toward majority class cases to achieve a high classification rate, we applied the
synthetic minority over-sampling technique (SMOTE) to the training cohort. SMOTE is an
approach in which the minority class is over-sampled by creating “synthetic” examples
rather than over-sampling with replacement. Thus, more related minority class samples to
learn from are provided, allowing the learner to carve broader decision regions, leading
to more coverage of the minority class limitations [38]. For greater generalisability of our
results, we performed a stratified 10-fold cross-validation on the under-sampled data in all
experiments to train and test the model resulting in a train and test partition of 90% and
10%, respectively, for each fold. We performed patient-specific splits to ensure that each
patient’s lymph nodes remained together in either the training or test set. We reported
the mean and standard deviation of the area under the ROC-curve, accuracy, precision,
recall, and F1-sore over the test set results of the ten runs. Furthermore, receiver operating
characteristic (ROC) curves were plotted for each cohort. To ensure that our model was
more than just a complicated surrogate for volume, we ran our experiments using only
Volume and Mean Intensity as input features.

The correlation coefficients and constant of the model were computed (Figure 3,
Appendix A, Figure A1). It is worth mentioning that the feature selection and the model
construction were all from the date of the training cohort.

Discrimination performance was assessed by the Harrell concordance index (C-index).
The feature selection and the construction of the radiomics signature model were

performed using our in-house software programmed with the Python Scikit-learn package
(Python version 3.10, Scikit-learn version Scikit-learn 0.23.3, http://scikit-learn.org/) [36,39].

The features IMAD (Intensity Median Absolute Deviation) and GCS (GLCM Cluster
Shade) use the secondary axis; all other features use the primary axis.

The following are the abbreviations used for the features:
IE—Intensity Energy
IMAD—Intensity Median Absolute Deviation
GCP—Glcm Cluster Prominence
GCS—Glcm Cluster Shade
HV—Histogram Variance
GAC—Glcm Auto Correlation
IMX—Intensity Maximum

http://scikit-learn.org/
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IMN—Intensity Mean
GCT—Glcm Cluster Tendency
GC—Glcm Contrast
IV—Intensity Variance
IRMS—Root Mean Square
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Figure 3. Feature weights generated by the LASSO logistic regression model’s coefficients indicate
positive or negative correlation with lymph node metastasis.

2.4. Development of the Clinical and the Combined Prediction Models

The clinical factors included in our analysis were age, AFP level, B-HCG level, his-
totype (seminoma and non-seminoma), and body mass index (BMI). These factors were
included as they have all been suggested to be prognostic in TGCT [40–43].

Our study included purely clinical and laboratory chemistry parameters to represent
a real-life scenario for the individualised preoperative prediction of LNM at the time of the
CT scan.

The selected clinical features and their relationship to lymph node metastasis were
assessed with a univariable logistic regression algorithm in the training set. Variables with
p < 0.2 from the univariable analysis were included for further application in a multivariable
logistic regression algorithm using forward stepwise selection. A cutoff value of 0.25 is
supported by the literature [44,45].

Then, multivariable logistic regression analysis built three prediction models—a
radiomics-only model, a clinical-only model and a combined clinical-radiomics model,
incorporating the selected radiomics and clinical features.

Their predictive performance for detecting LN metastasis was assessed using the
receiver operating characteristic curve (ROC) analysis, in which the areas under the curve
(AUC), accuracy, precision, and F1-Score were established.

The clinical utility was demonstrated by decision curve analysis (DCA) to evaluate
the net benefits of the prediction models at different threshold probabilities in the training
cohort and compare their discriminatory performance.
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3. Results
3.1. Clinical Features

The study flowchart is presented in Figure 1.
Ninety-one consecutive patients with histologically-proven TGCT (mean age

35.2 ± 9.4 years, range 18–63) met the criteria for participation in the study. In this cohort,
10 patients (9.1%) relapsed within the six-year observation period (mean 9.8, 35.2 ± 9.4
years, range 18–63); there were no statistically significant differences in clinical charac-
teristics between the LNM-positive group and LNM-negative group. After univariable
LR analysis, age, AFP level, B-HCG level, histotype, and body mass index (BMI) were
independent predictors in the clinical model.

All patients’ baseline clinical characteristics are summarised in Table 1.

Table 1. Baseline demographic and clinical data.

Average age (range) 35.2 ± 9.4 Years (18–63)
Histological type

Seminoma 60 Patients (66%)
Non-seminoma 31 Patients (34%)

Tumour classification (T)
T1a 64 (70%)
T1b 27 (30%)

Tumour marker
AFP positive 21 Patients (19%)
B-HCG positive 40 Patients (44%)
AFP und B-HCG positive 10 Patients (11%)

BMI (range) 25.9 ± 4.6 (19.3–43.9)
Patients’ status in 6-year follow up

Complete remission (CR) 81 (89%)
Relapse of disease (RD) with metastatic lymph nodes 10 (11%)

In total, the dataset consisted of 273 sample instances (three LN ROIs/patient), with
33 instances in the category “relapse of disease” (minority class) and 240 instances in the
category “without relapse of disease” (majority class). According to a proportion of 7:3,
the 273 sample instances were randomly divided into a training cohort (n = 191) and a test
cohort (n = 82).

Due to the class imbalance in the dataset, the under-sampling technique called “In-
stance Hardness Threshold” was used to balance the data. The balanced data were used
for the logistic regression machine learning mode.

3.2. Feature Selection and Performance of the Radiomics Prediction Model

A total of 85 radiomics features were extracted from the venous-phase CT images of
the training cohort (Appendix A, Table A2). After screening these features, we chose the 12
radiomics features that had non-zero coefficients using the LASSO logistic regression model
as the best-performing predictors for LN metastasis (Figure 3; Appendix A, Table A3).

These features were used as input volume for the machine learning-based radiomics
modelling. Traditional measurements of machine learning-based modelling were used,
including accuracy, precision, F1-Score, and the area under the ROC curve (AUC), to assess
the performance of predicting lymph node metastases.

All tests were two-sided; p < 0.05 was considered statistically significant.
In the ROC analysis of the radiomics model, the classification evaluation metrics of

the 10-fold cross-validation were AUC 0.84 ± 0.17, accuracy 0.76 ± 0.12, precision 0.80 ±
0.18, recall 0.72 ± 0.23, and F1 score 0.73 ± 0.17 in the training cohort (Table 2).
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Table 2. Performance of the radiomics, clinical, and combined models.

Model AUC (95% CI) Accuracy Precision Recall F1 Score

Radiomics-only 0.87± 0.04 0.80 ± 0.06 0.81 ± 0.06 0.80 ± 0.08 0.80 ± 0.06
Clinical-only 0.75 ± 0.08 0.68 ± 0.10 0.66 ± 0.11 0.71 ± 0.16 0.68 ± 0.12

Combined
clinical-radiomics 0.89 ± 0.03 0.81 ± 0.04 0.80 ± 0.07 0.83 ± 0.06 0.81 ± 0.04

Using only Volume and Intensity Mean as input features led to inferior results with
an accuracy of 0.58 ± 0.16, with a precision and recall of 0.11 ± 0.07 and 0.43 ± 0.27,
respectively.

3.3. Performance of the Clinical and the Combined Prediction Model

The clinical-only and combined clinical-radiomics models were built by applying
multivariable logistic regression analysis.

The predictive performances of the radiomics-only, the clinical-only and the combined
clinical-radiomics models on the training cohort are shown in Table 2.

The different models’ overall accuracy and F1 score for predicting LN metastases were
77% (range: 65–90%, AUC = 0.60–0.94) and 61% (range: 20–90%).

The combined clinical-radiomics model showed the best prediction accuracy with 90%
(AUC 0.94–0.10), indicating that adding radiomics features could improve the predictive
performance.

Figure 4 shows the receiver operating characteristic (ROC) curves for the clinical, the
radiomics, and the combined clinical-radiomics models on the training cohort.
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Figure 4. The ROC curves of the radiomics-only, the clinical-only, and the combined clinical-radiomics
models show that the combined model outperforms the radiomics and the clinical model in predicting
LN metastasis (training cohort 94% vs. 84% and 60%, respectively).

We performed a decision curve analysis to assess the clinical value of the combined
clinical-radiomics model. With threshold probability on the x-axis and net benefit on the
y-axis, the decision curve analysis graph illustrates the trade-offs between true and false
positives (describing benefit and harm) as the threshold probability changes (see Figure 5).
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Figure 5. The decision curve analysis for the combined prediction model.

The x-axis represents the threshold probability, the y-axis the net benefit, and the blue
line shows the combined prediction model. The green line represents the hypothesis that
no patients had LN metastases, and the orange line that all patients had LN metastases.
The threshold probability is where the treatment’s expected benefit equals the benefit of
avoiding treatment. If the possibility of LN metastasis is over the threshold probability, then
a therapeutical strategy for LN metastases should be adopted. The DCA of the combined
model shows that if the threshold possibility is between 0 and 0.13, then using the combined
model to predict LNM adds more benefit than treating either or all patients.

4. Discussion

We developed a clinical-radiomics model for the individualised preoperative pre-
diction of LNM in testicular germ cell tumour (TGCT) patients that consisted of clinical
risk factors and radiomics features to identify the stage I (TGCT) patients who required
adjuvant therapy and those who did not.

Our main findings can be summarised by the following:
Using multivariable logistic regression analysis, we constructed a radiomics-only

model, a clinical-only model, and a combined predictive model integrating clinical and
radiomics features. The combined radiomics–clinical model showed the highest accuracy
in predicting LNM (AUC = 0.89 ± 0.03; 95% CI); accuracy: 81%, precision 80%, recall 83%,
and F1 score 81%.

Most TGCT patients initially present with stage I disease, and >95% of all stage I semi-
noma or non-seminoma patients are cured regardless of the therapeutical strategy [46–48],
resulting in controversies regarding adjuvant chemotherapy, radiotherapy, or retroperi-
toneal lymph node dissection following orchiectomy due to short- and long-term side
effects, such as secondary malignancies, cardiovascular disease, peripheral neuropathy,
and loss of antegrade ejaculation [5–7,49].

The serum biomarkers AFP, β-hCG, and LDH are substantial instruments for diagnos-
ing, prognostication, and monitoring testicular cancer, which is reflected in the International
Germ Cell Cancer Consensus Group prognostic index [17,50,51]. However, sensitivity is
limited; up to 40% of patients with recurrence have “normal” values [52].

Several studies have proposed further prognostic clinical risk factors, including age
and BMI, but their roles have not yet been sufficiently clarified, with somewhat controversial
discussion [40–43].

To date, neither imaging nor serum tumour markers have been proven to be suitable
predictors of the presence of lymph node metastases [53,54]. However, the inherently excel-
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lent prognosis can be put at risk by suboptimal treatment, with over- and undertreatment
being equally detrimental.

Several studies demonstrate the ability of radiomics based on MR- or CT-imaging to
detect lymph node metastasis, including lung, oesophagal, breast, cervical, bladder, and
colorectal cancer [28,29,55–58]. Classification accuracy in these studies ranged from 76% to
84%, which is lower than the results of our study.

Until now, few studies have been performed to distinguish between benign and
malignant LN in testicular cancer.

In their study, Baessler et al. showed that a machine-learning classifier based on (CT)
radiomics could predict the histopathology of lymph nodes after LN dissection following
chemotherapy in patients with metastatic non-seminomatous germ cell tumours of the
testis [59]. This single-centre retrospective study included eighty patients with a total of
204 lesions classified by a support vector model and achieved 81% classification accuracy.

Nevertheless, in contrast to our study, they did not include clinical variables in their
radiomics approach to further increase diagnostic performance.

Furthermore, they split the study cohort, which was altogether of moderate size, into
three subgroups, with only 19 patients in the test group and with an overall reduction
in statistical significance as a result. To address the moderate dataset, we used a cross-
validation approach, which involves repeated data splitting to prevent overfitting while
obtaining accurate estimates of the model coefficients [60]. Lewin et al. achieved in
their retrospective, single-centre study on 77 metastatic TGCT patients with 102 lesions a
classification accuracy of only 72% [61].

Lewin et al. used only one single CT scanner. In contrast, our study analysed data
from two scanners, thus being more representative of data acquired during routine clinical
practice. Like Baessler et al., Lewin et al. did not integrate clinical factors into a combined
clinical-radiomics model.

Given our 10-fold cross-validation approach, the a priori inhomogeneity of our dataset,
and the integration of clinical risk factors, we are convinced that our combined prediction
model is more generalisable, and forthcoming investigations should further validate our
trained model in prospective studies.

Beyond radiomics-based models, several clinical models exist to predict the occurrence
of LNM in TGCT. However, these models yielded conflicting results and could not be
included in today’s clinical decision-making [53,62–64].

Taken together, identifying and implementing novel biomarkers might be helpful for
early diagnosis and monitoring of disease relapse.

Our study is the first to use a combined CT-based radiomics model integrating clinical
predictors for the individualised preoperative prediction of LNM in early-stage TGCT to
reduce overtreatment in this group of young patients.

However, we acknowledge some limitations in the present study.
As a retrospective study with a modest cohort size, there may be inevitable selection

bias. Furthermore, classes were highly unbalanced, in line with the normal distribution,
with 80% of all stage 1 TGCT patients showing an excellent outcome. Nevertheless, unlike
prior radiomics investigations on LN metastasis that mostly extracted features from the
largest cross-sectional area, our study performed whole lesion analysis by considering all
available CT slices, thus providing abundant information about tumour heterogeneity.

Second, our case was a single-institution study. Due to our patient population’s
high cure rate, it is challenging to power studies to examine prognostic and predictive
factors adequately. However, prospective and multicenter validation is warranted to obtain
higher-quality evidence for clinical use.

Moreover, only one (imaging) modality and the circulating tumour markers β-HCG
and AFP were used in this study. Among other prognostic factors, such as lymphovascular
or rete testis invasion, tumour size is the most valuable prognostic factor for early-stage
seminoma relapse [65,66]. Our study included solely clinical and laboratory parameters that
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can be collected easily, quickly, and non-invasively so that a preoperative risk assessment
of the individual patient can already be made at the time of CT.

In addition to the known serum markers, studies show the potential of non-coding
RNAs as biomarkers with stem cell-associated microRNAs (miR-371a-3p and miR-302/367
clusters) outperforming the conventional tumour markers in detecting newly diagnosed
TGCT patients [67,68].

If more modalities were combined as a multi-omics approach, the obtained feature
pool might increase the ability to predict LNM in patients with testicular cancer.

Our presented CT-based radiomics–clinical model represents an exciting non-invasive
prediction tool for individualised prediction of LN metastasis in testicular germ cell tu-
mours to reduce overtreatment in this young group of patients. Multi-centre, retrospective
validations and prospective randomised clinical trials should be undertaken to gain high-
quality evidence for clinical applications in subsequent studies.

5. Conclusions

In conclusion, our combined clinical-radiomics model applied on preoperative CT
imaging represents an exciting new tool for improved prediction of lymph node metastases
in early-stage testicular germ cell tumour (TGCT) patients to reduce overtreatment in
this group of young patients. The presented approach should be combined with novel
clinical biomarkers, such as microRNAs (miR-371a-3p and miR-302/367 cluster) and further
validated in larger, prospective clinical trials.
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Appendix A

Table A1. Settings of the radiomics feature extraction.

Setting Determination

Bin Method FBN
Bin Amount 32
LoG Filter 0
LoG Sigma 2

Matrix Aggregation 3D Average
Method Directions

Resample Filter 1
Resample Spacing X 1
Resample Spacing Y 1
Resample Spacing Z 1

Second-Order Distance 1
Threshold Filter 0

Table A2. Radiomics features extracted for model development.

Radiomics Features of First Order Radiomics Features of Second Order:
Gray Level Co-Occurrence Matrix (GLCM)

Histogram Minimum Joint Maximum
Histogram Maximum Joint Average

Histogram Range Standart Deviation
Histogram Mean Joint Variance

Histogram Variance Joint Entropy
Histogram Standart Deviation Difference Average

Histogram Skewness Difference Variance
Histogram Kurtosis Difference Entropy
Histogram Entropy Sum of Averages

Histogram Uniformity Sum of Variance
Histogram Mean Absolute Deviation Sum of Entropy

Histogram Robust Mean Absolute Deviation Angular Second Moment
Histogram Median Absolute Deviation Contrast

Histogram Coefficient Variation Dissimilarity
Histogram Quartile Coefficient Dispersion Inverse Difference

Histogram Interquartile Range Inverse Difference Normalised
Histogram P10th Inverse Difference Moment
Histogram P25th Inverse Difference Moment Normalised
Histogram P50th Joint Maximum
Histogram P75th Joint Average
Histogram P90th Standart Deviation

Histogram Minimum Histogram Gradient
Intensity Joint Variance

Histogram MaximumHistogram Gradient
Intensity Joint Entropy

Intensity Minimum Difference Average
Intensity Maximum Difference Variance

Intensity Range Difference Entropy
Intensity Mean Sum of Averages

Intensity Variance Sum of Variance
Intensity Standart Deviation Sum of Entropy

Intensity Skewness Angular Second Moment
Intensity Kurtosis Contrast
Intensity Energy Dissimilarity
Intensity P10th Inverse Variance
Intensity P25th Correlation
Intensity P50th Auto Correlation
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Table A2. Cont.

Radiomics Features of First Order Radiomics Features of Second Order:
Gray Level Co-Occurrence Matrix (GLCM)

Intensity P75th Cluster Shade
Intensity P90th Cluster Prominence

Intensity Root Mean Square Cluster Tendency
Intensity Mean Absolute Deviation Information Correlation 1

Intensity Robust Mean Absolute Deviation Information Correlation 2
Intensity Median Absolute Deviation Inverse Variance 41

Intensity Coefficient Variation
Intensity Quartile Coefficient Dispersion

Intensity Interquartile Range 44

Table A3. Radiomics features selected by LASSO.

Radiomics Features of First Order Radiomics Features of Second Order:
Gray Level Co-Occurrence Matrix (GLCM)

Histogram Variance Auto Correlation
Intensity Maximum Cluster Shade

Intensity Mean Cluster Prominence
Intensity Variance Cluster Tendency
Intensity Energy Contrast

Intensity Root Mean Square
Intensity Median Absolute Deviation
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