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ABSTRACT. Purpose: Semantic segmentation is one of the most significant tasks in medical
image computing, whereby deep neural networks have shown great success.
Unfortunately, supervised approaches are very data-intensive, and obtaining reli-
able annotations is time-consuming and expensive. Sparsely labeled approaches,
such as bounding boxes, have shown some success in reducing the annotation
time. However, in 3D volume data, each slice must still be manually labeled.

Approach: We evaluate approaches that reduce the annotation effort by reducing
the number of slices that need to be labeled in a 3D volume. In a two-step process, a
similarity metric is used to select slices that should be annotated by a trained radi-
ologist. In the second step, a predictor is used to predict the segmentation mask for
the rest of the slices. We evaluate different combinations of selectors and predictors
on medical CT and MRI volumes. Thus we can determine that combination works
best, and how far slice annotations can be reduced.

Results: Our results show that for instance for the Medical Segmentation Decathlon
—heart dataset, some selector, and predictor combinations allow for a Dice score
0.969 when only annotating 20% of slices per volume. Experiments on other data-
sets show a similarly positive trend.

Conclusions: We evaluate a method that supports experts during the labeling of 3D
medical volumes. Our approach makes it possible to drastically reduce the number
of slices that need to be manually labeled. We present a recommendation in which
selector predictor combination to use for different tasks and goals.
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1 Introduction
Many state-of-the-art techniques for medical segmentation are supervised approaches, which
require large amounts of annotated images to train neural networks. Especially when focusing
on semantic segmentation, annotation is very time-consuming, as target structures in images have
to be labeled with pixel-level precision. The situation is even more challenging when dealing
with 3D volume data, which consists of many image slices to be annotated.1 Naturally, such
supervised approaches pose severe challenges in disciplines, such as medicine, as data need
to be labeled by experts,2 sometimes even redundantly.
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In medical 3D volumes, the annotations are often generated by annotating individual 2D
slices. In this paper, we aim to answer the question as to how far this number can be reduced.
A reduced number of slices that needs to be annotated would speed up the annotation process. A
faster data labeling process has two benefits. First, it would free up expert annotators’ time, so
they can spend it on clinically relevant tasks. Second, a faster labeling process would result in the
creation of larger annotated datasets. This would most likely improve the results of deep learning
methods that require large amounts of labeled training data, as in the medical domain. Here, it is
not the number of images, but rather the amount of labeled training data, that acts as the limiting
factor.1 The approaches we compare work as a two-step process. First, based on different slice
similarity metrics, a selector selects slices that need to be manually annotated by an expert.
Second, the annotated slices are then passed to a predictor which creates segmentations for all
the unlabeled slices in the 3D volume. A schematic overview of the process can be seen in Ref. 1.
What makes our approach different from other approaches is that we actively facilitate overfitting
in order to generate annotations for sparsely annotated 3D volumes. For each volume, a new
predictor is trained using only the previously selected slices. Each predictor thus overfits on
a single specific volume. To determine the ideal combination of selector and predictor, we ana-
lyze different combinations and evaluate them on CT and MRI volumes. The analyzed selectors
range from similarity metrics computed directly on the slices, over histogram-based approaches
to perceptual similarity metrics.3 For the predictors, we use nearest interpolation as a baseline and
compare it against the state-of-the-art slice interpolation method implemented in the MITK
(Medical Imaging Interaction Toolkit) workbench,4 as well as three state-of-the-art deep segmen-
tation models (U-Net,5 DeepLabV3+,6 and MAnet7).

The evaluated approaches facilitate ideas from active learning,8 and the overfitting
approaches facilitate techniques from the lower end of the bias-variance spectrum.9 Thus we
trade expert time with compute time, as the latter is cheaper and easier to come by. We believe
that this is a sustainable trade-off, as compute time for standard processes will presumably be
further reduced in the future,10 which cannot be expected for the expert time. In very critical use
cases, the predicted annotations could even be reviewed and/or edited by experts. This would still
reduce the required expert time, as it is much faster to assess a high-quality annotation than to
create one.

2 Related Work
While there is quite a lot of literature that focuses on semantic segmentation in medical image
computation, we focus on a specific topic: how to reduce the number of slices to be annotated
when creating training data for a medical volume segmentation task. Surprisingly, there is little
work that focuses on the task of labeling images, while this task is very tedious and builds the
underlying foundation for many machine learning algorithms.

One way to reduce labeling efforts is to use weakly supervised methods. Weakly supervised
models are trained on some form of simpler annotations. Those can include but are not limited to
image-level labels, bounding boxes, or point annotations.11–14 Creating annotations for those
methods is much faster than creating full pixel-level labeled segmentation masks. A drawback
of this approach is that methods trained with weakly supervised labels often perform worse than
fully supervised methods.

Valindria et al.15 used overfitting a segmentation model on a single image to estimate the
performance of the said model in the absence of ground truth data. In their reverse classification
accuracy (RCA), a segmentation model generates a segmentation for an image where no GT
exists. To evaluate this segmentation, an RCA model is trained on this image. This is done
by extracting pixel-based image features and then training a classifier to map them to a given
class. To evaluate the RCA model, it is applied to all pixels of images where GT segmentations
exist, thus creating a segmentation. This approach will not work on arbitrary images but shows
good results on images that are similar to the one where the RCA model is trained on. The
assumption that the model will perform good on similar images even though it only has been
trained on one single image is similar to the assumptions we made for our approach.

Top et al.16 used an active learning framework in which a random walker algorithm is used to
segment slices in a 3D volume. During training, the active learning framework queries an
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annotator for regions in which the segmentation algorithm has high uncertainty. Those newly
annotated regions are then used to improve the segmentation performance. This overall setup is
very similar to our approach. Although the semisupervised methods try to reduce the annotation
time by making the annotation process itself simpler, we aim to reduce the overall amount of
annotations needed.

Tajbakhsh et al. compared a number of active learning approaches that are used for cost-
effective labeling of medical images. However, only two of the eight methods presented in the
paper fall into the “one-shot” category that is comparable to our approach. The other methods
require an iterative workflow where multiple training and labeling iterations are needed.17

Mahapatra et al.18 used a conditional generative adversarial network (cGAN) in an active
learning framework to leverage small datasets. The cGAN takes an input image and its manually
annotated mask to generate similar looking images. A Bayesian network19 calculates the infor-
mativeness of the generated image samples. The samples that are rated with a high informative-
ness are used to fine tune a classifier. In an active learning method, this cycle is repeated. The
Bayesian network makes use of noise that is inherent to the data sample (aleatoric) and combines
it with uncertainty in the models parameters.

The method presented by Zhang et al. relies on a feature extractor network that needs to be
pretrained in an unsupervised manner.20 Both approaches show that the one-shot methods
achieve competitive results compared to the iterative ones.17

Similar to our approach, Zheng et al. had experts annotate representative 2D slices from 3D
volumes. The slices are then used to train a network and predict labels for the whole volumes.
However, in contrast to our approach, the prediction is not shown to the experts but used as
pseudolabels for weakly supervised learning.21

Sugino et al. also proposed an approach in which they trained a fully convolutional network
on 3D volumes with missing slices. They experimented with 2D and 3D networks but found that
both approaches can achieve good results.22 For this reason, we only focus on 2D models in our
work. A key difference is that they used an entire dataset to train their model whereas we use one
predictor per volume. Furthermore, we experiment with different slice selectors.

3 Method
Annotating medical volume data for the purposes of training deep neural networks for segmen-
tation tasks can be a time-consuming process. To tackle this challenge, we evaluate different
combinations of selectors and predictors, which allow for reducing the number of slices to
be annotated. While a selector facilitates a similarity metric, in order to select the slices to
be annotated, a predictor predicts annotations for the remaining slices based on the provided
annotations (see Fig. 1). This procedure is done individually for each volume. This means that
for each individual volume a new predictor is trained which then overfits on the given volume.
The reasoning behind this is that many slices inside a single 3D volume should be similar to each
other. The task of the selector is to find a set of representative slices. When the predictor network
learns to accurately segment a slice, it should also be able to accurately segment other slices that

Fig. 1 Functionality of the presented approaches. A selector chooses representative slices from
a given input volume. These slices are used to train a predictor, which is then used to create
segmentations for the remaining slices.
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look very similar. Our goals are to find the ideal combination of selector and predictor and to
determine the minimal amount of slices to be annotated in order to obtain sufficient segmentation
accuracy. In the following two sections, we briefly describe the selectors and predictors we have
incorporated into our evaluation.

3.1 Selectors
To analyze the more advanced similarity-based selectors, we include two simple baselines in our
evaluation. The first baseline, to which we refer as random, randomly samples a given number of
slices from the volume. The second baseline, to which we refer as Keep_n, selects every n’th
slice to be annotated. This selector was also used by Sugino et al.22

All other selectors facilitate similarity-based clustering. For the simplest version, each slice
is flattened into a single vector which is used as input for the k-means algorithm. The standard
sklearn k-means implementation was used. The k-means algorithm converged for all cases in <10
iterations, without reaching the max number of iterations.

The second approach is based on histogram analysis, an aggregated technique often used for
image comparison. The histogram with 255 bins is computed for each image and used as input
for a k-means clustering algorithm. The third approach relies on perceptual similarity that is often
used as loss function in neural networks if images are compared.3 The perceptual similarity is
computed with the lpips Python library23 using a ImageNet-pretrained AlexNet.24

Finaly, structural similarity index measure (SSIM) is an image similarity measure that has
shown good results on various image comparison tasks, which is why we also include it here.25

In the case of SSIM and perceptual similarity, the similarities between all slices are computed and
the resulting matrix is used for the clustering.

For all results displayed in Table 2, k-means with k ¼ 15 was used as we found this to give
the best results compared to k ¼ 5 and k ¼ 10. The times different selector strategies need to
return slices can be seen in Table 1.

To obtain the desired number of slices from these cluster-based selectors, we randomly sam-
ple a fixed number of slices from each cluster. If a cluster is too small to sample the required
number of slices, slices are sampled from the most similar cluster to obtain the desired number of
slices.

To keep the number of experiments and thus compute time at bay, we only consider axial
slices. Only for the FLARE21 dataset, we ran a subset of our experiments on the coronal and
sagittal axis as well.

3.2 Predictors
After the slices obtained from the selector have been manually annotated, a predictor can be used
to predict segmentation masks for the remaining slices. To analyze more advanced predictors,
we use nearest-neighbor (NN) interpolation as a baseline. In contrast to linear interpolation,
NN ensures that the interpolation of two segment IDs remains a valid segment ID.

One more advanced predictor is provided by the MITK26 framework and graphical tool for
medical image analysis. Its graphical interface is designed to handle the complete clinical work-
flow, including image analysis, data retrieval, and diagnosis. For segmentation, it includes not
only basic tools like draw or fill but also advanced interpolation techniques. Being based on other

Table 1 Times a selector needs to select slices of a single volume from
the BraTS19 dataset. Times have been averaged over 7 runs.

Times

Keep_n 764 ms ± 26.5 ms

k -means 7.27 s ± 203 ms

Hist. 1.77 s ± 27.2 ms

Percept. 1 min 4 s ± 706 ms

SSIM 2 min 23 s ± 795 ms
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well-established frameworks like ITK or VTK, a wide range of typical file formats as well as
multiview images, such as CT, or color images, such as pathological images, can be handled with
MITK. The framework and toolkit is completed open source and can be extended with custom
extensions.

We use its 2D workbench interpolation4 to predict labels for the remaining slices. It uses a
shape-based interpolation algorithm introduced by Herman et al.27 Within a slice, the distance to
a segmentation border is determined. The distance has a positive value if the pixel is within the
segmentation and a negative value if it is outside. The distances to the segmentation border are
computed using the 3 × 3 matrix, as described in the original paper. To then interpolate between
slices, cubic spline interpolation is used on those distance maps.

Because the MITK could only be used for binary datasets, we also used the 3D Slicer soft-
ware package28 as a predictor. 3D Slicer provides functionality that is very similar to the MITK.
To interpolate between missing slices, it uses a morphology-based approach that only uses the
segmentation maps. The algorithm was proposed by Albu et al.29 It works in an iterative way,
computing transitions between pairs of slices. Interpolated slices can be used in the following
iterations. This allows for a smooth but not over-smooth transition between slices. Like the
MITK, the 3D Slicer GUI does not allow to change any parameters of the algorithms so the
defaults have been used.

Furthermore, we analyze the value of deep-learning-based predictors, whereby we overfit
state-of-the-art segmentation models to single 3D volumes, to predict labels for the nonannotated
slices. This means that the models need to be trained/overfitted for/to each individual volume.
This is fairly straightforward and does not differ from the usual way a neural network is trained in
a semantic segmentation task. The only big difference is that for each new 3D volume we train a
new network. The models are initialized with weights obtained by pretraining on ImageNet30

(BraTS19) or Instagram images (FLARE21 and MSD-Heart). All weights are provided by the
segmentation models pytorch library.31 Note that we do only train 2D models. Previous work has
shown that 2D and 3D models are often on par.22,32

To analyze the impact of such deep overfittings, we decided to include a comparison of three
state-of-the-art semantic segmentation models (U-Net,5 DeepLabV3+,6 and MAnet7) in our
study. We chose those models based on the results of public leader boards for different segmen-
tation datasets.33 Using different architectures allows us to show that the approach presented is
independent of a given backbone network.

For our experiments, we specifically used pytorch model implementations provided by “seg-
mentation models pytorch.”31

On the BraTS19 dataset, a Resnet15234 was used as encoder, and on the FLARE21 and
MSD-Heart dataset, we went even larger with a ResNext10135 with cardinality 32. The archi-
tecture was chosen because it performed well on a test of a single volume from the dataset.

To set the hyperparameters for our networks, we ran a hyperparameter sweep on 12 rep-
resentative 3D volumes. We use those hyperparameters for all networks and volumes in the same
dataset. So even though each model is trained on a different individual 3D volume each network
has the same hyperparameters.

4 Datasets
All possible combinations of selectors and predictors, which we evaluate in this work, are ini-
tially evaluated on the BraTS19 dataset,36 a high-resolution MRI dataset, containing high-grade
glioma images. We choose to work with T1 contrast-enhanced images from the four available
contrasts in the dataset, because of its common use in medical image segmentation problems. To
make it feasible to test a large number of selector and predictor combinations, we further choose
12 volumes out of 259 available. We do this by applying PCA within each volume and doing
k-means clustering between the resultant PCs to select volumes based on maximum variability.

The medical segmentation decathlon MSD-Heart and the FLARE21 dataset. The MSD-
Heart dataset37 contains 30 mono-modal MRI volumes, from which we selected 7 volumes hav-
ing an equal number of 120 total slices, whereby the target ROI is left ventricle. We choose this
dataset because of its large target segmentation area. The FLARE2138 dataset contains 360 CT
volumes from which we select 6 volumes, which have an equal total number of slices for each
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volume. We selected FLARE21 dataset because of its diversity in target sites, such as liver,
kidney, spleen, and pancreas.

The FLARE21 and MSD-Heart datasets contain volumes with different numbers of slices in
the axial direction. For comparability, all volumes that have been chosen from one dataset had to
have the same number of slices. Volumes have been grouped by the number of slices and a group
has been chosen at random while ensuring that it contained enough and not too many slices.

5 Results

5.1 BraTS19
Table 2 shows the Dice scores for the BraTS19 dataset using different selectors and predictors.
The Dice scores are the mean Dice scores over the different volumes in the dataset. The standard
deviation is reported after the ±sign. This setup is kept for all the following tables in this paper.
The first column displays the train size, meaning that how many slices have been sampled from
each volume. The best result for each train size is highlighted in bold. As can be seen, usually the
deep-learning-based predictors outperform the NN interpolation baseline. Naturally, with
increasing train size, the performance increases, independent of the model. Furthermore, one
can see that usually the Keep_n-based selector gives the best results followed by the SSIM selec-
tor. The overfitting baseline results for U-Net, DeepLabV3+, and MAnet are 0.973, 0.917, and
0.958, respectively. This shows that the models did not completely overfit the data. The over-
fitting baselines are networks that have been trained on all slices. They represent the upper limit
of what results one could achieve with the given training time. The MAnet further is the best
predictor in most of the cases.

5.2 FLARE21 and MSD-Heart Dataset
For the FLARE21 and MSD-Heart datasets, we decided to only use the Keep_n and the SSIM
selectors, as they showed the most promising results on the BraTS19 dataset. The obtained
results are shown in Tables 3 and 4. In addition, those tables also show the average Hausdorff
distances39 between the ground truth and the predictions. All distances are reported in milli-
meters. Best results are highlighted for Dice scores in bold.

Because the results from the BraTS19 dataset show a high Dice score already, we decided
that no experiments with train sizes bigger than 50% were needed. Furthermore, this observation
motivated us to experiment with even fewer slices than the 20% train size. For the FLARE21
dataset, the deep-learning-based method outperforms the NN interpolation method on all train
sizes. The Keep_n strategy outperforms the SSIM strategy on all selectors and on all train sizes.
The U-Net predictor generally outperforms the NN interpolation as well as the 3D Slicer. The
interpolation method used in the 3D Slicer software achieves better results than the NN inter-
polation for slices selected with the Keep_n selector but is worse for slices using the SSIM selec-
tor. This indicates that the 3D Slicer needs slices sampled with a regular step size.

For the MSD-Heart dataset, the interactive interpolation method from the MITK workbench
achieved the highest Dice scores and small Hausdorff distances on most train sizes. On small
train sizes (12.5% and 20%), the performance of the deep learning models is very similar to the
MITK one, while it outperforms it in some cases. The performance of the 3D Slicer lies between
the U-Net and the NN interpolation, which performs worst for this dataset. Similar to the
FLARE21 dataset, the Keep_n strategy outperforms the SSIM selector on all train sizes and
selectors. The overfitting baseline for the FLARE21 and MSD-Heart dataset are a Dice score
of 0.996 and 0.998, respectively. Showing that those models overfitted well on both datasets.

Figure 2 shows some visual results for the segmentations on all three datasets. All results
have been obtained using the 50% Keep_n selector and a U-Net or NN interpolation as predictor.

5.3 Random Crops
In earlier results, we have seen that the Keep_n selection strategy performs better than the other
selectors. We came to the conclusion that this is because there is a strong concordance along one
image axis in our data. To investigate this, we decided to add a padding around each slice of the
volume and crop a patch at a random location from the padded image. This way the sampled
slices should have less concordance compared to the original approach. We experimented with
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Table 3 Dice scores and Hausdorff distances for the Keep_n and SSIM strategies on the
FLARE21 dataset. For comparison with a state-of-the-art method, we choose the interpolation
algorithm from the 3D Slicer software package. For each training percentage, the best results
(Dice score) have been highlighted in bold. For each training size, the first row depicts the
Dice score and the second row the Hausdorff distance.

%

Keep_n SSIM

U-Net NN 3D Slicer U-Net NN 3D Slicer

12.5 0.885 (±0.018) 0.849 (±0.018) 0.870 (±0.019) 0.844 (±0.028) 0.789 (±0.031) 0.674 (±0.067)

3.282 (±0.631) 6.105 (±0.568) 5.948 (±0.468) 3.363 (±0.764) 6.407 (±0.402) 6.212 (±0.881)

20 0.926 (±0.009) 0.900 (±0.011) 0.913 (±0.014) 0.857 (±0.038) 0.812 (±0.035) 0.793 (±0.067)

2.982 (±0.36) 4.962 (±0.83) 5.439 (±0.344) 3.242 (±0.752) 6.131 (±0.428) 5.71 (±0.489)

33 0.930 (±0.015) 0.930 (±0.009) 0.939 (±0.011) 0.898 (±0.015) 0.871 (±0.013) 0.805 (±0.145)

2.932 (±0.384) 4.966 (±0.338) 5.008 (±0.358) 3.125 (±0.801) 5.577 (±0.509) 4.824 (±0.517)

50 0.962 (±0.005) 0.932 (±0.005) 0.960 (±0.006) 0.952 (±0.013) 0.919 (±0.012) 0.937 (±0.015)

2.719 (±0.247) 4.955 (±0.418) 4.888 (±0.353) 2.752 (±0.77) 5.154 (±0.724) 3.296 (±0.585)

Table 4 Dice scores and Hausdorff distances for the Keep_n and SSIM selectors on the MSD-
Heart dataset. For comparison with a state-of-the-art method, we chose the interpolation algorithm
from the MITK and the 3D Slicer software packages. For each training percentage, the best results
(Dice score) have been highlighted in bold. For each training size, the first row depicts the Dice
score and the second row the Hausdorff distance.

%

Keep_n SSIM

U-Net NN MITK 3D Slicer U-Net NN MITK 3D Slicer

12.5 0.943
(±0.041)

0.921
(±0.010)

0.948
(±0.009)

0.940
(±0.007)

0.900
(±0.086)

0.865
(±0.036)

0.899
(±0.051)

0.867
(±0.054)

1.294
(±0.348)

1.644
(±0.181)

1.498
(±0.180)

1.278
(±0.201)

1.378
(±0.511)

1.928
(±0.198)

1.100
(±0.216)

1.074
(±0.109)

20 0.969
(±0.013)

0.947
(±0.006)

0.964
(±0.010)

0.957
(±0.003)

0.944
(±0.050)

0.914
(±0.015)

0.940
(±0.023)

0.927
(±0.021)

1.123
(±0.23)

1.469
(±0.143)

1.365
(±0.199)

1.444
(±0.164)

1.204
(±0.44)

1.586
(±0.199)

1.047
(±0.177)

1.209
(±0.171)

33 0.978
(±0.012)

0.965
(±0.029)

0.985
(±0.004)

0.977
(±0.003)

0.961
(±0.016)

0.934
(±0.006)

0.965
(±0.014)

0.950
(±0.016)

1.022
(±0.198)

1.353
(±0.145)

1.258
(±0.154)

1.378
(±0.165)

1.113
(±0.469)

1.469
(±0.253)

0.861
(±0.126)

0.979
(±0.18)

50 0.984
(±0.008)

0.965
(±0.003)

0.993
(±0.003)

0.989
(±0.001)

0.973
(±0.210)

0.950
(±0.005)

0.988
(±0.003)

0.967
(±0.011)

0.945
(±0.173)

1.356
(±0.129)

1.114
(±0.155)

1.268
(±0.114)

0.911
(±0.423)

1.238
(±0.344)

0.645
(±0.083)

0.675
(±0.13)
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Fig. 2 Visual segmentation results for the three different datasets. (a) For the BraTS19 dataset,
the labels are: necrotic and nonenhancing tumor (red), peritumoral edema (green), and enhancing
tumor (purple). (b) For the FLARE21 dataset, the labels are: liver (red), kidney (green), spleen
(purple), and pancreas (pink). (c) For the MSD-Heart dataset, the segmentation target is the left
atrium (red). First two image pairs show the results for U-Net and the last pair for NN interpolation.
The first image in a pair is the prediction the second the ground truth. All methods show
good performance with slight differences mainly around the edges of the segmentations. The big-
gest differences are in the FLARE21 dataset (b). Especially, the spleen seems to be hard to
segment.

Table 5 The slices in the FLARE21 dataset were padded and cropped at random locations have
been taken. The IoU was 0.01587 for padding with 50 pixels at each border and 0.01087 for
padding with 100 pixels. For small training dataset sizes and fewer overlap, the SSIM selector
outperforms the Keep_n selector (bold). For each training percentage, the first row depicts the
Dice score and the second row the average Hausdorff distance.

%

+50 px padding +100 px padding

Keep_n SSIM Keep_n SSIM

12.5 0.640 (± 0.309) 0.622 (± 0.263) 0.489 (± 0.210) 0.628 (± 0.281)

3.594 (± 1.721) 3.078 (± 1.678) 3.017 (± 1.478) 1.912 (± 0.948)

20 0.789 (± 0.211) 0.736 (± 0.266) 0.642 (± 0.167) 0.676 (± 0.201)

2.965 (± 1.652) 2.852 (± 1.828) 2.504 (± 1.504) 1.756 (± 1.058)

33 0.842 (± 0.175) 0.824 (± 0.217) 0.760 (± 0.142) 0.724 (± 0.170)

3.061 (± 1.536) 2.752 (± 2.045) 2.369 (± 1.535) 1.69 (± 1.262)

50 0.884 (± 0.148) 0.852 (± 0.146) 0.767 (± 0.149) 0.762 (± 0.135)

2.438 (± 1.525) 2.542 (± 2.001) 2.174 (± 1.72) 1.496 (± 1.216)
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two different amounts of padding, either padding 50 pixels at each side or padding 100 pixels at
each side. The mean intersection over union (IoU) for the resulting patches was 0.1587 and
0.1087, respectively. The results for the Keep_n and SSIM selector strategies can be found
in Table 5. One can see that in the setting where there is only very few training data available
and the overlap between the patches is minimal the SSIM strategy outperforms the Keep_n strat-
egy. For the other settings, Keep_n performs better.

5.4 Other Image Axes
For the FLARE21 dataset, we also ran some experiments using other image axes. Similar to the
experiments using axial image slices, the Keep_n selector outperforms the SSIM selector. This
leads us to believe that there is also a strong concordance between image slices on the other axes
for the FLARE21 dataset. Comparing these results with the results from Tables 3 and 4, one can
see that using the other image axes gives higher Dice scores. The voxel size for the FLARE21
dataset is 2.5 mm in axial direction and 0.7 mm in sagital and coronal direction (Table 6).

6 Discussion
Our results show that there are no clear favoring strategies for all situations. On a binary segmen-
tation task (MSD-Heart), the MITK interpolation method provides the best results in terms of Dice
score. Especially in cases where the amount of labeled training slices gets reduced only by half,
very high Dice scores (>0.99) can be achieved. For cases where the number of labeled training
slices gets reduced more drastically, the U-Net can achieve results similar to the MITK method. In
practice, we would still recommend the use of the MITK method because of the reduced compute
requirements. On a desktop GPU, depending on the volume size and underlying model used, the
overfitting on the other hand can take up to 30 min per volume. A clear downside of the MITK
interpolation method is that it is only implemented for binary segmentation tasks. A workaround
would be to split the labels into separate binary labels per target structure and run the interpolation
on each of them. After that, the binary labels could be combined again to have a multi-class seg-
mentation. For a multi-class segmentation task (BraTS19 and FLARE21), we would recommend
the deep-learning-based method over the NN interpolation, as we believe that the longer training
time is out-weight by the performance. Especially, when the annotations are used in a downstream
task to train or evaluate other machine learning models appropriate annotations are essential.

Table 6 Dice scores and Hausdorff distances for segmentation when slices from different image
axes are used. (FLARE21 dataset). Again, the Keep_n selector outperforms the SSIM selector.
A U-Net was used as a predictor. Bold results (Dice) show the best selector for each axis and
percentage. For each training size, the first row depicts the Dice score and the second row the
Hausdorff distance.

%

Coronal Sagittal

Keep_n SSIM Keep_n SSIM

12.5 0.965 (±0.017) 0.944 (±0.043) 0.954 (±0.026) 0.939 (±0.054)

4.857 (±0.884) 11.386 (±2.303) 7.386 (±1.236) 11.186 (±1.823)

20 0.974 (±0.008) 0.960 (±0.027) 0.970 (±0.014) 0.937 (±0.057)

4.754 (±0.638) 9.183 (±3.002) 7.035 (±1.137) 10.170 (±2.713)

33 0.979 (±0.007) 0.967 (±0.017) 0.975 (±0.009) 0.928 (±0.063)

4.631 (±0.642) 8.938 (±2.215) 6.987 (±0.998) 8.650 (±2.493)

50 0.981 (±0.004) 0.974 (±0.012) 0.978 (±0.006) 0.947 (±0.047)

4.857 (±0.884) 5.027 (±1.324) 6.712 (±0.837) 7.775 (±2.085)
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As a selector, we would recommend the Keep_n strategy. It achieved the best results while at the
same time it is very fast and also easy to understand.

Our results show that the deep-learning-based models that have achieved higher results in
the overfitting baseline also achieve higher results when trained with lower train sizes. This
shows that there are indeed a lot of similar slices in a medical 3D volume. It also shows that
a relatively small number of representative slices is sufficient for a neural network to segment the
other slices.

In our earlier experiments, the Keep_n selector outperformed the other more elaborate selec-
tors. We believe that this hints at strong interslice correlations along the given image axis. To
investigate this, we performed the experiment in which we cropped patches at random slice loca-
tions. This reduced the concordance along the axis drastically. In cases with little training data
and reduced concordance, the SSIM selector outperformed the Keep_n selector. This leads us the
the recommendation that for datasets where very little concordance along a given image axis is
expected the SSIM selector should lead to better results.

While the neural network-based predictors take longer time to be trained, it can be used in a
practical setting. One possible solution is an updated workflow. An annotator could annotate the
selected slices of a volume, whereas a predictor is trained on a second volume or the predictions
are created over night. In both settings, the annotator has to look twice into a volume, but this can
be accounted for in the software and time saving during the annotation process more than com-
pensates for that. Another possible solution would be further software or hardware optimizations.
Relying on nonoptimized research code, we believe that an improved setting could lead to
significant time reductions.

Our method lends a lot of ideas from active learning, yet does not exactly fall in the category
of active learning. In active learning, an annotator would label some image slices, feed them to
the model, wait for some output, label new slices, and repeat the whole process. We see it as a
benefit that in our method, the process is not iterative and an annotator does not have to wait for
some results and then work on the same volume again as in other methods.16

7 Conclusions and Future Work
In Sec. 1, we mention that we trade human annotation time with compute time, as the second is
cheaper, easier to come by and will most likely reduce in the future. An overview of compute
times can be seen in Table 7. This table shows that when using big encoders, as done in the
FLARE21 setting, the time the selector needs is negligible.

Our paper provides an overview of how far the number of slices in a 3D volume that need
annotations can be reduced, to obtain sufficient segmentation quality. We tested different selec-
tors and predictors on CT and MRI data to answer this question. Based on our results, we see no
reason to assume that the imaging modality influences the performance and therefore believe that
the methods are domain agnostic. In general, the MITK interpolation method seems to lead to
sufficient results, without strong performance penalties. For datasets where only a very small
number of slices can be labeled manually in a given time frame, the deep-learning-based pre-
dictors also seem to perform sufficiently well.

As our evaluation naturally required a vast amount of compute cycles, we see several
endeavors, which still could be investigated in the future. For example, we are interested in the
influence of different target sizes and variations in how slices are sampled from clusters. In addi-
tion, it would be interesting to investigate the effects of initializing the networks with weights that

Table 7 Training times in minutes for the U-Net on the BraTS19 and FLARE21 datasets. A larger
encoder led to longer times for the FLARE21 dataset. For all examples, 50% of the slices have
been used for training.

Keep_n k -means Hist. Percept. SSIM

U-Net BraTS19 25.39 22.43 25.67 23.81 28.12

U-Net FLARE21 88.47 NA NA NA 82.5
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have been pretrained on medical data, possibly even from annotated slices of the same dataset.
This might even speed up the deep-learning-based predictors.
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The authors have no relevant financial interests in the manuscript and no other potential conflicts of
interest to disclose.

Code, Data, and Materials Availability
The data presented in this article are publicly available at BraTS19: https://www.med.upenn.edu/
cbica/brats2019/data.html; FLARE21: https://flare.grand-challenge.org/; and MSD-Heart: http://
medicaldecathlon.com/. Code will be available at https://github.com/sirtris/slice_segmentation.
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