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Fig. 1: ClusterNet clusters scatterplots in accordance with human cluster perception. As ClusterNet is trained on point-based
clustering data, rather than images, its predictions are invariant of visual encoding. Here we show a comparison of ClusterNet’s
perception-aware results against those of several state-of-the-art clustering techniques, for which are optimized on our dataset. In
the first column, we show human annotation and the agreement rate of a group of human raters for such stimulus. For all clustering
approaches, we report an agreement score, which measures the difference to the group of raters. Higher values are better.

Abstract—Cluster separation in scatterplots is a task that is typically tackled by widely used clustering techniques, such as for instance
k-means or DBSCAN. However, as these algorithms are based on non-perceptual metrics, their output often does not reflect human
cluster perception. To bridge the gap between human cluster perception and machine-computed clusters, we propose a learning
strategy which directly operates on scattered data. To learn perceptual cluster separation on this data, we crowdsourced a large scale
dataset, consisting of 7,320 point-wise cluster affiliations for bivariate data, which has been labeled by 384 human crowd workers.
Based on this data, we were able to train ClusterNet, a point-based deep learning model, trained to reflect human perception of cluster
separability. In order to train ClusterNet on human annotated data, we omit rendering scatterplots on a 2D canvas, but rather use a
PointNet++ architecture enabling inference on point clouds directly. In this work, we provide details on how we collected our dataset,
report statistics of the resulting annotations, and investigate perceptual agreement of cluster separation for real-world data. We further
report the training and evaluation protocol of ClusterNet and introduce a novel metric, that measures the accuracy between a clustering
technique and a group of human annotators. Finally, we compare our approach against existing state-of-the-art clustering techniques.

Index Terms—Scatterplots, clustering, point cloud learning

1 INTRODUCTION

Clustering is often applied in the context of scatterplots in order to help
humans to identify patterns within a large set of data points, whereby
the resulting insights can be used to guide further analysis or decision-
making. Since the effectiveness of a clustering depends on various
factors, such as the choice of clustering algorithm, its parameters, or
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the number of clusters to be identified, the development of cluster algo-
rithms has been targeted since decades [4, 14, 52]. While the developed
algorithms obtain a meaningful separation of clusters, these clusters do
often not correlate with the human visual system’s perceptual cluster
separation, and require carefully selected parameters.

The fact that clustering algorithms do not always align with the per-
ceptual cluster separation of the human visual system can make it more
challenging for humans to interpret and make sense of the clustering
results. When the algorithm identifies clusters that do not align with
the way humans would naturally group data, it can be more difficult
for humans to understand and interpret the patterns and relationships
within the data. Additionally, such clusterings may lead to incorrect or
biased interpretations of the data, especially in cases where the data is
being used to inform important decisions, where a clear understanding
of the underlying patterns in the data is mandatory. Therefore, we
propose ClusterNet, a learning-based clustering approach, that takes
into account the way humans naturally group and interpret data. We
have developed ClusterNet in the hope that it improves the accuracy

ar
X

iv
:2

30
4.

14
18

5v
1 

 [
cs

.L
G

] 
 2

7 
A

pr
 2

02
3

https://orcid.org/0000-0001-8642-2789
https://orcid.org/0000-0002-5951-6795
https://orcid.org/0000-0003-3586-4741
https://orcid.org/0000-0002-7857-5512


and usefulness of clustering results in visualization scenarios, and that
it makes it easier for humans to interpret and apply those results.

A straight forward approach to learn clustering, would be to train
a conventional CNN directly on images of scatterplots. While this
is in principle possible, it has severe downsides. Firstly, scatterplots
are typically less dense then other images, and the distribution of the
visualized points is often uneven, with many points in some regions
and few points in others. This can make it difficult for 2D CNNs to
learn meaningful patterns across the entire plot, as the filters may not
capture the relevant features in regions with fewer data points. Secondly,
when learning directly on scatterplot images, clustering would not only
be learned based on the given point distribution, but also based on
the visual encoding. While this might be perceived as a benefit at
a first glance, we argue that it should not be considered, since the
visual encoding, i.e., shape, size and color of data points, should not
affect the perceived clustering. If it would, it would be probably in an
uncontrolled manner, and should therefore be prevented. Therefore, we
have designed ClusterNet to directly work on the underlying point data.
Based on crowdsourced clusterings of data points, we train ClusterNet
by facilitating a point-wise contrastive loss computation, which enables
order invariant segmentation gradient propagation, circumventing the
problem of cross entropy loss producing contradictory gradients for
order dependent class labels. We further utilize meta classification
learning [23, 25], optimizing a binary classifier for pairwise similarity
predictions between points, which poses as contrastive learning method.
In such a way, positive samples are derived from data points originating
to the same (similar) cluster, whereas negative samples are drawn from
points in dissimilar clusters. Thus, within this paper, we make the
following contributions:

• We propose ClusterNet, a point-based neural clustering algorithm,
that clusters point-based data in accordance with human cluster
perception.

• We present a novel training strategy to train ClusterNet on point-
based clustering datasets, by exploiting contrastive meta classifi-
cation learning.

• We introduce an outlier-aware, generalizable metric, for measur-
ing agreement between an isolated rater and a group of raters.

• We release a large-scale point-based clustering dataset, containing
7,320 human annotated scatterplots from real-word data1.

Within the remainder of this paper, we will first discuss the work
related to our approach in Section 2, before providing details on crowd-
sourcing human annotations for cluster separation in Section 3. We
then describe our method in Section 4, followed Section 5 and and
evaluation of ClusterNet in Section 6. Finally, we address limitations
of our approach in Section 7 and conclude in Section 8.

2 RELATED WORK

Many approaches for clustering bi-variate data have been developed in
the last few decades. In this section, we provide an overview of existing
approaches, first focusing on algorithms based on hand-crafted features,
before discussing learning-based algorithms. Finally, we will discuss
those algorithms, which take into account human perception.
Conventional clustering. For many years, a huge number of algo-
rithms for clustering data have been developed, among them: density-
based clustering [14], hierarchical clustering, sub-space clustering,
fuzzy clustering, co-clustering, scale-up methods, while there are more
coming every year. While some of these approaches have a fixed max-
imum number of clusters to find, others need to be tuned by finding
adequate values for neighborhood size, point distance threshold or
bandwidth. One of the most frequently used approaches, DBScan [14],
evaluates distances between the nearest points, while also removing
outliers. Zhang et al. propose BIRCH [52], a tree-based cluster al-
gorithm, that uses an existing agglomerative hierarchical clustering
algorithm to cluster leaf nodes. A density-based clustering algorithm
is presented by Ankerst et al. [4], which produces a cluster ordering,

1Data and source code will be provided in case of acceptance.

Table 1: Overview of existing scatterplot datasets featuring subjective
human judgments. Judgments collected for our dataset consists of richly
annotated scatterplots, rather than binary decisions, and we obtained
annotations from 5 times more subjects than previous dataset studies.

Dataset users responses stimuli modality human judgment

ScatterNet [31] 22 5,135 50,677 real similarity perception
ClustMe [2] 34 34,000 1,000 synthetic cluster count (binary)
ASD [39] 70 1,259 5,376 real optimal visual encoding
VDCP [40] 26 1,139 7,500 synthetic cluster count
HSP [36] 18 4,446 247 real similarity perception
WINES [46] 18 90 18 real class separability
SDR [44] 2 1,632 816 real+synth class separability
ClusterNet 384 7,320 1,464 real point-wise cluster affiliation

representing the cluster structure of a given set of points. Aupetit et
al. [6] provide an evaluation of 6 state-of-the-art clustering techniques
on a perception-based benchmark [2]. In their evaluation, they assess a
cluster counting task, where the benchmark provides human decision
for a scatterplot, if one or more than one cluster were perceived. They
can show that agglomerative clustering techniques are in substantial
agreement with human raters. However, in this work, we asked human
raters for point-wise cluster decisions, rather than a binary decision for
a cluster number.
Neural Clustering. Learnable cluster algorithms, have been around for
a long time, like Learning Vector Quantization [41] or Neural Gas [32].
An overview for neural clustering approaches are proposed by Du et
al. [13] and Schnellback et al. [42]. Self-organized maps (k-SOM),
developed by T. Kohonen [3, 18, 29], is a neural clustering algorithm,
that operates on a grid of neurons, where the network learns to assign
clusters to proximal data points. Xia et al. [51] propose an interactive
cluster analysis by contrastive dimensionality reduction. First, a neural
network generates an initial embedding for dimensionality reduction
of a given high-dimensional dataset. Then, in an interactive way, the
user selects data points to create must link and cannot link connections
between clusters. Then the neural network is re-trained in a contrastive
learning manner to update the embedding. Fan et al. [15,16] use a CNN
in order to automatically brush areas in scatterplots, without selecting
indvidual points, which is a selection targeted clustering technique.
In contrast, ClusterNet is based on PointNet++ and does not require
rendering an image, like related image-based approaches. It rather
operates on scattered data directly, while being order invariant to the
input point cloud, making it applicaple to real-world data.
Perception-based clustering. In the work of Quadri et al. [40] they
crowdsource cluster counts from human observers for synthetic scat-
terplots. They use distance and density-based algorithms to compute
cluster merge trees. Furthermore, they use the merge trees in conjunc-
tion with a linear regression model to find the number of clusters a
human would perceive in a scatterplot, without identifying the actual
clusters. Abbas et al. [1, 2] propose two visual quality measures to rank
scatterplots based on their complexity of visual patterns. They encode
scatterplots using Gaussian Mixture Models (GMM), before optimizing
a model based on human judgments. While their approach is limited to
rank scatterplots based on their grouping patters generated by GMM,
we propose a clustering algorithm, that operates on any bivariate data,
assigning cluster labels to individual points. Further, Sedlmair and Au-
petit [43,44] evaluated 15 visual quality measures for class separability
on human judgments presenting distance consistency (DSC) [45] as
best measure. ScatterNet, proposed by Ma et al. [31], is a learned simi-
larity measure that captures perceptual similarities between scatterplots
to reflect human judgments. Xia et al. [51] propose a human visual
analysis approach for dimensionality reduction of high-dimensional
data. Within a human-in-the-loop task, contrastive learning is applied,
in order to gradually learn to cluster an embedding space. However,
this iterative process requires a fine-tuning of the model for each user
input to update the embedding.
Scatterplot datasets. Our provided dataset is not the first scatter-



plot dataset available to the research community. Existing work al-
ready investigates subjective human judgments in the context of scatter-
plots [2,31,36,39,40,44,46]. As listed in Table 1 datasets are collected
featuring diverse human judgments like similarity perception, class
separability or cluster counts, whereby sources for real scatterplots are
popular datasets like MNIST, Rdatasets [5], or scatterplots synthetically
generated based on Gaussian Mixture Models. While these datasets
provide valuable human judgments for scatterplots, they lack complex-
ity, as point-wise judgments are crucial for the investigation of human
cluster perception. Therefore, we have collected point-annotated cluster
data, for which we describe the crowdsourcing process and provide
statistics in the following subsections.

3 POINT-BASED CLUSTERING DATASET

This section provides details on the collection of our dataset, which
is used to train ClusterNet. In order to collect a large number of
annotations, feasible to train a point-based deep learning model, we
crowdsourced annotations for our dataset online using Prolific.

3.1 Stimuli Selection
To be able to collect high quality annotations, the right selection of
stimuli, crowd workers will be exposed to, is crucial. To be able to test
our approach in real-world scenarios, it was mandatory to choose real-
world stimuli, rather than more simplistic ones generated with Gaussian
mixture models. Thus, we download data from https://data.gov,
the United States government’s open data website. It offers access
to datasets covering a broad range of topics, including agriculture,
climate, crime, education, finance, health, energy, and more. During
the time of collecting the dataset, the site provided more than 240K
datasets. Because of easier processing, we chose to only collect data
available as CSV files. To be able to generate comparable stimuli, we
did a first preprocessing step of all downloaded CSV files and filtered
out datasets with less than 512 or more than 10K rows. Furthermore,
we only used CSV files with more than 2 columns, since we require
at least two data dimensions in order to draw two-dimensional plots.
For datasets with more than 512 rows, we randomly sample a fixed
number of 512 rows, and similarly to Sedlmair et al. [44], we applied
dimensionality reduction techniques to these datasets yielding 1464
scatterplots. For dimensionality reduction, we used t-SNE [48] and
PCA [27] from the scikit-learn framework2 using default parameters.
Finally, we normalized all datasets by centering points around (0,0),
with positions lying within the range of [−1,1]. The resulting dataset
has been used to generate stimuli for our crowdsourcing process.

3.2 Crowdsourcing Process
In the past crowdsourcing experiments have been proven useful for
collecting large amounts of annotated data [8, 20, 21, 49]. To be able
to crowdsource our training data from a large group of raters, we built
a web-based framework supporting mouse and keyboard interactions.
Crowd workers were exposed to this framework, and tasked to segment
clusters in scatterplots generated for the stimuli selected as discussed
above. To have an intuitive interaction, clusters had to be segmented by
brushing points, whereas brush color varied per cluster.

The entire crowd sourcing process is divided into three parts. First,
each crowd worker received an introduction, where he/she watched a
3 minute video with a description of the task, example stimuli with
corresponding clusterings, as well as examples for good and bad cluster-
ings. We refer the reader to the supplementary material for the tutorial
video. In order to segment the scatterplots on a point-based level,
we presented the plots as a vector-based plot, rendered on a 500x500
pixel-sized canvas using a marker size of 5 pixels (see Figure 4). We
allowed participants to brush the points using a brush with a variable
size, effectively enabling them to make coarse and fine-grained anno-
tations. While initially, all points within the scatterplot are colored
black, during the segmentation process, participants use the brush to
colorize the points within a cluster using a selected color. Initially, the

2https://scikit-learn.org/stable/modules/classes.html#module-
sklearn.manifold

interface provides only a single color for brushing points. However,
the user can add more colors (up to 20) by clicking a + button, as also
shown in Figure 4. If participants were not able to delineate any cluster,
we enabled them to explicitly state this using a checkbox labeled I
can’t see any cluster. Users were further instructed, that points without
cluster affiliation should remain black, which would signal that they
are considered outliers or noise in general. Once confident with a seg-
mentation, participants pressed a button below the plot to continue to
the next stimulus.

In the second part of the crowd sourcing process, each user had to
practice the task during a short training phase, whereby he/she also
received performance feedback. While this part made use of stimuli not
used in the main study, these stimuli formed obvious clusters, which
were chosen such that we would expect an agreement between cluster-
ing algorithm results and capable human observer results. Accordingly,
we were able to use this clustering as ground truth for the participant
feedback. We could also verify participant performance through these
stimuli, and let users only continue to the study’s final part if they
successfully completed all these training stimuli.

In the third part of the crowd sourcing process, participants were
faced with the main study, during which they had to annotate clusters
in 20 stimuli each. In order to detect bots or click-through behavior, we
added three additional sanity checks. In Figure 4, we present such a
stimulus used as sanity check, for which we predefined a ground truth
cluster separation. User segmentations, which diverge more than 30%
from the target, fail this sanity check, while we discard the data from
users that fail more than one sanity check.

Using this procedure, we collected 7,320 point-wise annotations
for 1,464 scatterplots, whereby each stimulus is annotated by at least
5 individuals. On average, a user took 15.1 minutes to complete our
study, whereby we had 257 male, 125 female, and 2 users who did not
want to provide their sex (Mage = 32.7). We had to reject a single user,
as he/she failed the sanity checks, and further 17 users, as they did
discontinue the study. In the following, we report statistics regarding
the collected dataset.

3.3 Annotation Analysis
As described above, we crowdsourced 5 point-wise annotations per
scatterplot from human raters. In order to investigate agreement be-
tween human judgments, we computed an agreement score α , which
we define in Section 5. Having defined a metric to measure human
agreement for clustering scatterplots enables us to investigate the de-
gree of agreement for our collected dataset, and thus the quality of
the data. Based on this score, the average agreement score for our
collected dataset is 81.9%. In Figure 2, we display average agreement
scores stratified by number of clusters, whereby the number of clus-
ters is determined by checking if more than half of the users agree on
the same number of clusters. If this agreement cannot be found, the
average number of clusters of all 5 annotations is computed. It shows
that, except for 5 and 12 clusters, the agreement between users is not
affected by an increasing number of clusters.

To illustrate our agreement score, Figure 3 shows two stimuli with
corresponding annotations and different agreement scores, whereby
both stimuli have been annotated by five participants. In the top row
are 5 annotations where participants showed strong agreement in the
clustering, resulting in an average agreement score of 99.79%. In
contrast, the bottom row shows annotations with an agreement score
below 50%, where participants not only disagree on which points
belong together, but one participant (most right) even indicated the
absence of a cluster. Note that our score is independent of the order of
clusters and, therefore also of cluster color. This means it only matters
that points are drawn using the same color, but not with which color. In
the top row of Figure 3, all 5 users agreed on the number of clusters (8)
and the corresponding shape of the clusters. In the bottom row, the users
disagreed on any aspects, resulting in a relatively low agreement score.
Additionally, in Figure 2 it becomes apparent, that for an increasing
number of clusters the occurrence of data samples decreases. Looking
at cluster numbers greater than 6 clusters, the amount of data samples
is below 5%, an insignificant number of samples to make general

https://data.gov
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Fig. 2: Our dataset consists of 1,464 stimuli, we show the distribution
of stimuli that got annotated with a certain number of clusters. User
agreement is visualized in red for the number of clusters.

assumptions. Therefore, we exclude such stimuli from our training set,
and included only those which are highlighted in Figure 2.

4 CLUSTERNET

To be able to learn and imitate human cluster perception based on our
large-scale point-based clustering dataset, we propose ClusterNet, a
model that learns to cluster point-based data from human annotations.
In this section, we will first discuss ClusterNet’s architecture (see Sub-
section 4.1), before discussing the loss we used for training ClusterNet
(see Subsection 4.2).

4.1 Model Architecture
While ClusterNet shall aid visualization purposes, it shall not learn
on image data, as these would contain visual encodings, potentially
influencing cluster perception. Therefore, such as existing clustering
techniques, we directly operate on scattered data and output a point-
wise prediction containing clustering results, that can be visualized with
any visual encoding. To do so, ClusterNet has to be able to learn from
our unstructured data, in which each point is associated with a cluster
ID and points with the same cluster ID belong to the same cluster. Un-
fortunately, learning on such unstructured data poses several challenges.
First, due to the unstructured and irregular nature of the scatterplot data,
traditional convolutional neural network (CNN) architectures which ex-
pect a regular grid data structure are not applicable. This is an important
aspect, since the ordering of our scattered point data, as stored on disk,
might vary, without actually affecting the visualization. Such effects
are often overlooked in the visualization community, but have recently
also been investigated for line graphs by other researchers [47]. For
training ClusterNet, we need to take this aspect into consideration, such
that its predictions become invariant over point ordering. Unfortunately,
order-invariance is not only relevant with respect to the order of stored

Human agreement: 49.87%

Human agreement: 99.79%

Fig. 3: Comparison of two scatterplots used in our study. The top row
shows a strong average agreement score of 99.79%, while the bottom
row has a low average agreement score below 50%.

Fig. 4: Web interface used for the crowdsource study in order to collect
point-wise annotations from human observers. The shown scatterplot
is a sanity check to filter out click-through participants.

points, but also with respect to the order of clusters. When predicting
clusters, we want ClusterNet to be invariant of the cluster IDs, since
cluster IDs can be permutated, without affecting the correctness of the
result. So we need to realize a model architecture and a loss, which
are invariant to these orderings. Another challenge is the fact that our
visual stimuli are often sparse, meaning they contain a large number of
empty regions, it becomes more challenging to extract useful informa-
tion from the data. Finally, since crowdsourcing annotations involves
human raters, our training data set size is smaller than in other domains.
Together with the noise naturally present in scatterplot data sets, this
poses a high risk of overfitting.

To deal with the challenges outlined above, we have investigated
techniques from the field of deep geometric learning, where order
invariance is also an important aspect. In the past years, several point-
based learning architectures have been proposed, which directly learn
on point cloud data [12, 22, 26, 37, 38]. In order to build ClusterNet,
we decided to adapt the well-known PointNet++ [38] architecture to
learn on our point-based scatterplot dataset, since it was demonstrated
to perform well at semantic segmentation tasks. However, in their
experiments they also apply their network to 2D point clouds, sampled
from MNIST [30] images. We follow their example and fix the input
size to N = 512 points in Euclidean space and setting the z-axis of all
points to 0. The feature extractor consists of 4 hierarchical layers, for
both down sampling and up sampling stages, where we use point cloud
sizes 256,128,64,8 for farthest point sampling (FPS). Note, that we
use a random initialized FPS during training, and fixing it for inference.
Additionally, we change the implementation of PointNet++, that for
each point, the encoder produces a vector of size 128, before outputting
a cluster probability P and noise probability Pnoise for each point. The
two outputs of our network have the shape NxC and Nx1, where C is the
maximum number of clusters. However, commonly used loss functions
like negative log likelihood would require a fixed cluster order, and are
therefore not applicable, as it would mean that we relate the position of
a cluster to the number of clusters present in the target. Having said this,
during training the model would chase arbitrary gradients, resulting in
the absence of convergence, which makes a specialized loss important.
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Fig. 5: Scattered data with color coded clustering (left), and correspond-
ing similarity matrix S, see Equation (1) (right).

4.2 Training Loss
In order to be not only invariant with respect to point order, but also
with respect to cluster order, we borrow from the field of meta clas-
sification learning using a contrastive loss, as proposed by Hsu et
al. [23–25]. Meta classification learning solves a multi-class problem
by reformulating it as a binary-class problem. It optimizes a binary
classifier for pairwise similarity prediction and through this process
learns a multi-class classifier as a submodule. Therefore, we represent
our cluster targets as a similarity matrix S, which encodes point-wise
cluster affiliation. It has the form S ∈ N2, where N is the number of
points in the scatterplot, and it is defined as:

Si j =

{
1, Pi,Pjsame cluster (positive)
0, different cluster (negative)

(1)

where Pi,Pj are points from the same scatterplot. This matrix contains
positive samples for similar points, that belong to the same cluster, and
negative samples for points that are dissimilar, not the same cluster.
For clarification, we demonstrate the representation of our targets in
Figure 5. It is clear, that permuting the order of points results in the
same matrix with equal permutation applied.

Based on this cluster formulation, we can now define a measure
to investigate agreement between targets, referring to it as agreement
score α̂ and define it as follows:

α̂(Ra,Rb) =
1

N2

N

∑
i

N

∑
j

1−|Si j(Ra)−Si j(Rb)| (2)

where Ra,Rb are annotations of two users for the same scatterplot R. In
order to compute agreement inside a group of M targets, we can then
compute an averaged agreement score for all possible combinations of
two targets

(M
2
)
= K as follows:

α(G) =
1
K

K

∑ α̂(Ra,Rb) (3)

Ultimately, representing targets in binary form using S enables us
to apply meta classification learning to our point-based ClusterNet, by
minimizing the following loss term::

Lmcl =−ωD ∑
i j
Si j log Ŝi j + (1−Si j) log(1− Ŝi j) (4)

where ωD is a weight matrix, that is used to rescale the momentum of
negative samples in our contrastive loss. Further, we use it to correct
the imbalanced error contribution of small clusters, accounting with
fewer points to the loss function. We define such weight matrix as
follows:

ωD(S) =

{
1

w2
c
, S= 1

D, S= 0
(5)

where D is the momentum of negative samples and wc is the cluster
specific contribution wc = Nc/N. Nc is the number of points for a
specific cluster c and N the total number of points.

Separating clusters in scattered data is not well-defined. While it
might be obvious in some cases, in other cases points might not cluster
at all. Also, outliers might be present in the scatterplot. In the following,
we treat non-clustering points and outliers the same, calling it NOISE.

In order to better capture the aspect of NOISE, we introduce another loss
term Lnoise. It is computed using a weighted binary cross entropy loss in
order to counter strong class imbalances between positive (CLUSTER)
and negative (NOISE) samples. In our experiments we found, that
scaling the weighting of negative samples by 9 is beneficial, whereby
we reserve cluster ID 0 for points annotated as NOISE. In order to
convert a multi-cluster target, that contains multiple cluster IDs, into a
binary target, we replace all cluster IDs greater than 0 with 1. The loss
term is then defined as follows:

Lnoise =
1
N

N

∑
i

0.9yi log(pi)+0.1(1− yi) log(1− pi) (6)

Now, we can combine both loss terms into a weighted linear combi-
nation, whereby our loss term Ltotal is composed using ωmcl = 0.1 and
ωnoise = 1.0 resulting in the following overall loss:

Ltotal = Lmcl ωmcl +Lnoise ωnoise (7)

4.3 Training Protocol
To train ClusterNet, we use the Adam optimizer [28], with betas =
(0.9,0.999) and learning rate 1e− 5, reducing the learning rate by a
factor of 10 when the validation loss stagnates for 50 epochs with batch
size 32. We divide our dataset in train (1,171 stimuli), validation (87)
and test (206) split. During training, we apply random data augmen-
tation to the input point clouds, using horizontal and vertical flips and
random rotations between −180 and 180 degrees, before normalizing
all points clouds to be in range−1.0 and 1.0 centered around the origin.
Additionally, we adopt a random crop transformation, which performs
random horizontal and vertical cuts through the points. Points from the
left (top) side of the cutting line are moved to the right (bottom) side,
and vise versa. We keep track of the clusters that get cut, in this way
increasing the number of cluster annotations accordingly. For details
on how we implement such data augmentation strategy, we refer the
reader to our supplementary material.

5 OUTLIER-AWARE RATER AGREEMENT

In order to evaluate our model, we need to measure its performance
on our test split. Many measures exist, that can quantify performance
regarding different aspects. Therefore, selecting a metric, that is able to
grasp the intended solution to our problem is crucial.

In order to evaluate ClusterNet, we need to be able to measure the
’agreement between an isolated rater and a group of raters’, which is
computed by the Vanbelle Kappa Index [50] defined as:

κv =
ΠT −ΠE

ΠM−ΠE
(8)

with ΠT being the theoretical agreement,ΠM the maximum attain-
able agreement and ΠE the agreement expected by chance. Thus, the
Vanbelle Kappa Index computes values in the range of −1 (minimal
agreement) and 1 (perfect agreement). A value of 0 relates to the
agreement expected by chance. Note, Vanbelle and Albert indicate in
their work, that if there is no variability in the rating of the isolated
rater or by the group of raters, their index reduces to κv = 1 for perfect
agreement, κv = 0 else, when ΠM = ΠE . Therefore, it is clear, that in
the case of NO CLUSTER and SINGLE CLUSTER, the variability tends
to be zero, leading to κv = 0, if the group of raters does not perfectly
agree. Although, these are rather rare cases.

Nevertheless, it is beneficial to employ a measure that is also sensible
to outliers inside the group of raters, and that can even measure if an
isolated rating can improve agreement inside the group. In order to do
so, we use α̂ from Equation (2), and compute an averaged n-fold score
α for a given prediction R and the group of users G. Therefore, we
pick an annotation inside the group and replace it with R, yielding a
modified group GR. Then we compute α(GR) and repeat this N times,
where N is equal to the number of annotations in the group. Thus, we
compute an agreement index κα , that indicates if a given prediction
improves agreement for G, when κα > 0 or decline when κα < 0. We
define κα as follows:



κα (R,G) =
1
N

N

∑α(GR
n )−α(G) (9)

where G is the group of annotations and GR
n is the modified version of

G with the nth annotation replaced by R.
Since κv and κα do not capture outliers, we further adopt a noise

index κn, which computes the average of an n-fold binary Jaccard Index
J over the group of users and the prediction. This measure is defined
as:

κn(R̂, Ĝ) =
1
N

N

∑J(R̂, R̂n) (10)

where R̂ is the binary prediction for outliers. It encodes points associ-
ated with noise as 0 and points affiliating with a cluster as 1. R̂n are the
binary annotation of G encoding noise.

Having defined these metrics, we will use them in the next section
to evaluate ClusterNet’s results.

6 EXPERIMENTS

In this section, we evaluate the results obtained from ClusterNet trained
on our point-based scatterplot dataset. Similar to existing cluster al-
gorithms like DBSCAN [14], Birch [52] and Optics [4], ClusterNet
can predict on bi-variate data directly, rather than rendered scatterplot
images. As described in Section 3, scatterplots used for crowdsourcing
human annotations, originate from real bi-variate data, represented by
arrays of 2D points. For evaluation of our experiments, we compute
the three metrics proposed in Section 5 and report results averaged
per group of cluster numbers. In order to compensate for imbalanced
numbers of data samples per group, we compute the weighted average.
Note, that κn is computed only for data samples that actually contain
any noise labels.

6.1 Clustering Technique Comparison
ClusterNet is a model trained to predict human clustering for scattered
data. In this experiment, we investigate the gap between existing cluster-
ing techniques and ClusterNet. Therefore, ten state-of-the-art clustering
algorithms are compared using the implementation from scikit-learn3.
Since all approaches are parameterized, we first do a parameter search
using our training dataset to find the specific optimized parameters
for each technique. We then evaluate each approach using our test
dataset and compare it against ClusterNet using the best model from
Section 6.4. In Table 2, we report performance results for such cluster-
ing techniques. Note, that some techniques do not compute outliers, for
which we do not calculate κn. Looking at the results, we can see that
ClusterNet outperforms all compared state-of-the-art approaches on all
metrics. Looking at the α measure, we can see, that predictions from
ClusterNet almost perfectly agree with the group of users, indicated
by a value close to zero. The Vanbelle Kappa Index κv also suggests
a superior performance of ClusterNet over the other clustering tech-
niques, which we interpret such that ClusterNet predictions agree with
human annotators. Finally, examining the accuracy for noise or outlier
prediction, ClusterNet has a slight advantage over DBSCAN, while
both approaches clearly outperform Optics.

6.2 Contrastive Loss Weighting Analysis
In Section 4.2, we proposed our contrastive loss function Lmcl , together
with weight matrix ωD, which is used to rescale the momentum of
negative samples. Depending on the scaling factor D, the weight matrix
pushes apart dissimilar points. In this experiment, we demonstrate how
this can be used to adjust the behavior of our model using different val-
ues for D ∈ [0.1,1.0,10.0,50.0,100.0]. To do so, we train five models
using the protocol from above, and we report validation performance
in Table 3. Each model was trained for 37K steps and looking at the
results, the model trained with weighting factor D = 50.0 show slightly
better results for α and κv, while noise prediction accuracy lacks be-
hind the others. We see that, the model separates clusters stronger, for

3https://scikit-learn.org/stable/modules/clustering.html

D = 1.0 D = 10.0 D = 100.0

Fig. 6: Predictions from three models, trained using different weighting
factor D = [1,10,100]. Increasing the weighting produces predictions
separating clusters more often.

higher values of D and merges clusters for small values. In the case for
medium values of D = 10 and D = 50, the clustering results are more
variable, increasing clustering performance, but also makes it harder for
the model to differentiate between noise and cluster decision. However,
in the following experiments, we can show that this effect reduces, for
larger numbers of training steps, and we therefore use D = 50.0 in the
remaining experiments, if not stated otherwise.

6.3 Human Agreement Analysis
In Section 3.3 the agreement rate between users is discussed, and we
showed that it is similar for different numbers of clusters. In this exper-
iment, we investigate the impact of increasing human agreement during
training for our model performance. To do so, we use a threshold Tagree
to filter our training dataset. We start by Tagree = 10% and increase it in
10% steps until we reach Tagree = 100%. For each threshold, we discard
training samples, where the agreement score α(G)< Tagree. In Figure 7,
we report the number of remaining training data for each threshold, as
well as the resulting average agreement score. Looking at the different
dataset sizes, we chose 5 threshold values: 50%,60%,70%,80%,90%,
to use in this experiment. We do not train a model using threshold
100%, since too few training samples would remain in order to expect a
robust model. For threshold values below 50%, no training sample gets
discarded, and we call this dataset UNFILTERED. In this experiment,
we use a fixed negative momentum D = 50.0.

The obtained results a shown in Table 3. The first row shows results
from the model trained on all available training data, and is identical
with the best model from the first experiment. The results suggest,
that while increasing the level of agreement in the annotations, the test
performance increases until reaching a maximum, see row number four.
From this point on, filtering for higher agreement rates reduces the
amount of training samples, while also decreasing model performance.
We conclude from this experiment, that a certain degree of variance
in the annotations, helps to improve model performance, and that our
model achieves robustness through such variability. As a result, we use
the model from row four in Table 3 for our remaining experiments.

6.4 Fine-Tuning Analysis
After investigating the impact of weighting negative samples in Sec-
tion 6.2 and maximizing user agreement in the training data in Sec-
tion 6.3, we conduct a third experiment. Until now, we achieve the
best results using a value of D = 50.0 and an agreement threshold of
Tagree = 70%. In our supplement material, we evaluate performance of
such model for certain numbers of clusters, separately. We can show,
that the largest error contribution originates from predictions for single
clusters. This experiment investigates if, using smaller values of D,
improves single cluster predictions. Therefore, we train three different
models using momentum values D = [0.01,0.1,1]. In Table 3, we re-
port the performance results for all three models. Since the model has
already learned to separate clusters, fine-tuning it to reduce its cluster
separation ambitions must be done carefully. Therefore, we fine-tune
each mode using a reduced learning rate of 10−7 for 8K training steps.
Looking at the results, fine-tuning our model using a weighting factor
D = 0.1, helps to improve single cluster predictions and even overall
performance of our model.



Table 2: Comparison between ClusterNet and ten state-of-the-art clustering techniques using our test dataset. Some cluster techniques do not
compute outliers, for which we omit evaluating κn. Results highlighted with a * are from clustering techniques, that require priors about number
of clusters, which is extracted from the ground truth annotation.

ClusterNet DBSCAN OPTICS Ward Mean Affinity Spectral Agglomerative BIRCH K-means Gaussian Mixture
[14] [4] [34] Shift [11] Propagation [17] Clustering [35] Clustering [33] [52] [19] Model [7]

κα ↑ -0.52 -4.13 -5.56 -1.04* -6.90 -10.34 -2.65* -7.02 -7.68 -1.49* -0.90*

κv ↑ 0.69 0.62 0.56 0.66* 0.53 0.39 0.53* 0.38 0.38 0.63* 0.67*

κn ↑ 60.91% 55.49% 25.30% - - - - - - - -
*The ground truth number of cluster was given to compute these scores.

Table 3: Results of the contrastive loss weighting analysis (a), the human agreement analysis (b), and the fine-tuning analysis (c). We report
performance results computing three metrics: κα ,κv,κn.

D κα κv κn

0.1 -5.64 0.53 49.97%
1.0 -6.33 0.43 48.09%

10.0 -2.01 0.61 46.26%
50.0 -1.66 0.62 45.91%

100.0 -1.78 0.61 50.76%

(a) Analysis of different weights D for nega-
tive samples in our contrastive loss

Tagree #samples κα κv κn

UNFILTERED 1171 -1.66 0.62 45.91%
50% 1148 -1.52 0.62 47.51%
60% 1049 -1.34 0.63 50.24%
70% 883 -0.55 0.68 58.48%
80% 672 -1.27 0.57 54.08%
90% 448 -1.66 0.58 53.92%

(b) Human agreement analysis by selecting
different subsets of our data set

D Tagree κα κv κn

0.01 70% -0.85% 0.66 57.07%
0.1 70% -0.52% 0.69 60.91%
1.0 70% -0.68% 0.67 52.36%

(c) Fine-tuning analysis of our best model by
decreasing momentum for negative samples
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Fig. 7: We filter the training dataset using different agreement thresh-
olds Tagree, discarding training samples, where the agreement score is
below such threshold. This results in different amounts of training data.
For each threshold, we compute the resulting averaged agreement score
for the remaining training data.

7 LIMITATIONS

While being the first of its kind, and performing well on human-like
clustering, ClusterNet is not free of limitations. PointNet++ is order
invariant with respect to the input point cloud, as is our contrastive
loss term. However, the construction of the similarity matrix has a
complexity of O(n2). In our experiments, we used a fixed size for point
clouds N = 512, in order to keep computational costs low. As a result,
we had to discard or randomly sample from real-world datasets, to
match such requirements. However, in the field of contrastive learning,
approaches like SimCLR [10] or SwAV [9] exist, which do not have
this limitation and could be used to cluster points on the basis of their
latent codes.

ClusterNet is trained on human annotated data collected during a
crowdsourced study. Therefore, we rendered datasets using a fixed
visual encoding, which limits the assumptions about agreement and
perceived numbers of clusters to such visual encoding. So in cases,
where visual encoding affects cluster perception, this would not be cap-
tured by ClusterNet. However, as argued above, we believe that as soon
as visual encodings interfere with the clustering, the visual encoding

should be reconsidered in the first place. Nevertheless, if wanted, our
crowdsourced study could have also included variable visual encodings,
and provide it as point features to our network during training. Thus,
this is not strictly a limitation of ClusterNet, as more stimuli data could
incorporate visual encodings during cluster prediction.

8 CONCLUSIONS AND FUTURE WORK

We demonstrate ClusterNet, a clustering model based on human per-
ceived clustering annotations. We collected a large-scale dataset using
Prolific to crowdsource human point-wise clustering annotations. In-
vestigation of the collected data, shows agreement above 80% between
human subjects. This dataset enables us to train ClusterNet, a learned
clustering model, that mimics point clustering as performed by the
human visual system. In multiple experiments, our protocol for training
a point-based model is demonstrated, and we show how we fine-tune
our model in order to adjust it to human annotations. In order to eval-
uate ClusterNet, we further proposed a novel metric, that measures
agreement improvement, while also being sensible to annotation con-
sistency. Ultimately, we evaluate our model and compare it against ten
state-of-the-art clustering techniques, whereby ClusterNet outperforms
all compared algorithms.

While we see ClusterNet as a milestone for perception-based clus-
tering, we see several endeavors for future research. First, we could
investigate the influence of the visual stimuli on cluster perception.
Furthermore, we could facilitate the presented technology to learn other
scatterplot tasks, such as for instance noise detection. Finally, we would
like to investigate how ClusterNet can be used to optimize scatterplot
visualization parameters.
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