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Abstract

Indirect Time-of-Flight (iToF) cameras are a widespread
type of 3D sensor, which perform multiple captures to ob-
tain depth values of the captured scene. While recent ap-
proaches to correct iToF depths achieve high performance
when removing multi-path-interference and sensor noise,
little research has been done to tackle motion artifacts. In
this work we propose a training algorithm, which allows to
supervise Optical Flow (OF) networks directly on the re-
constructed depth, without the need of having ground truth
flows. We demonstrate that this approach enables the train-
ing of OF networks to align raw iToF measurements and
compensate motion artifacts in the iToF depth images. The
approach is evaluated for both single- and multi-frequency
sensors as well as multi-tap sensors, and is able to outper-
form other motion compensation techniques.

1. Introduction

Time-of-Flight (ToF) cameras are sensors that aim to
capture depth images by measuring the time the light needs
to travel from a light source on the camera to an object and
back to the camera sensor. Apart from direct ToF cam-
eras, such as LiDAR, which register the time of incoming
reflections of a light pulse at a high temporal resolution, an-
other common and cost-efficient approach are indirect ToF
(iToF) cameras, which do not require as precise measur-
ing devices. One realization of iToF devices are Amplitude
Modulated Continuous Wave (AMCW) ToF sensors, as for
example used in the Kinect system. These sensors contin-
uously illuminate the scene with a periodically modulated
light signal and aim to retrieve the phase offset between the
emitted and the retrieved signal, which gives information
about the travel time of the signal [12]. In order to retrieve
the phase offset it is necessary to perform multiple captures,
which makes this approach sensible to movements of both,
the camera and the objects in the illuminated scene. As
the measurements are taken with differing sensor settings,
so called multi modality, standard Optical Flow (OF) al-
gorithms achieve only low performance, and hence require
adaptation. While there are works that investigate the com-

pensation of motion using OF, they are only applicable to
specific sensor types [20, 13] or require carefully designed
datasets [10] to train OF networks. As a result, it is still
a common approach to merely detect motion artifacts and
mask the affected pixels in the final depth image, as is for
example realized by the LF2-algorithm [30] for the Kinect
sensor.

In this work, we propose a training algorithm for OF net-
works which allows to supervise the flow prediction using
the ToF depth image, without the need to directly supervise
the predicted flow, see Fig. 1. To this end, we analyze the
ToF depth computation to provide reliable and stable gra-
dients during training. Further, we introduce a set of reg-
ulatory losses, which guide the network towards predicting
flows, that are consistent with the underlying images.

2. Technical Background
In this section, we briefly describe iToF cameras.

ToF Working Principle. An AMCW iToF camera emits
a modulated light signal s(t), which is correlated at the cam-
era sensor with a phase shifted version of the emitted signal
s(t + θ) during the exposure time. The resulting measure-
ment m is repeated sequentially for different phase shifts
θ, from which the distance d is retrieved indirectly by es-
timating the phase shift ∆φ of the signal s when arriving
at the sensor. In the common case of four measurements
m0, . . . ,m3 at θ ∈ {0, π/2, π, 3π/2}, the distance d is re-
trieved as

∆φ = arctan

(
m3 −m1

m0 −m2

)
, (1)

dToF =
c ·∆φ

4πf
, (2)

where c is the speed of light, and f is the modulation fre-
quency of the signal s [12]. Due to the periodic nature of
Eq. (1), the reconstructed dToF is only unambiguous up to
a maximum distance of

dmax = c/(2f), (3)

specifically, dToF = d mod dmax, where the distance d
is referred to as depth, as is common practice in the area
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Figure 1. Illustration of the flow estimation. Given iToF measurements at subsequent time steps, a network is used to predict optical flows,
in order to align the images to the reference image (bottom row). From the warped measurements a ToF depth image can be reconstructed.
We propose to supervise the training directly on this ToF depth, and propagate gradients through the ToF depth computation. This figure
shows the single frequency, single-tap case with four measurements.

of ToF imaging. The so called phase wrapping of dToF

is typically resolved by using additional measurements at
different frequencies f [12].

However Eq. (2) is based on the assumptions that, (a)
only the direct reflection s(t+∆φ) is captured and (b) the
scene is static between the different captures. While (a) has
been dealt with to a large extent in recent work on correcting
iToF depths [1, 22, 26], only little research has been done
to reduce motion artifacts stemming from (b).

Multi-Tap Sensors. A realization of iToF sensors are so
called multi-tap sensors, which are able to capture multi-
ple measurements of mθ in parallel. The most widespread
approach are two-tap sensors, which allow the capture of
mA,i = mi and mB,i = mi+2 at the same time, by sort-
ing the electrons generated by incoming photons into two
quantum wells using a modulated electric field [27]. Inter-
nally, these two measurements are used to compensate for
hardware inaccuracies and reduce noise [13] by computing:

mi = mA,i −mB,i. (4)

In order to make direct use of mA,mB in Eq. (1), it is neces-
sary to calibrate the differences in the photo responses [27]

mA,i = rθ(mB,i+2), (5)

which doubles the effective frame rate, and reduce, but not
eliminate, motion-artifacts. Recently also prototypes for
four-tap sensors have been developed [6, 16], which in the
future might eliminate motion artifacts in single-frequency
captures, but not in multi-frequency sensors.

3. Related Work
In this section we will briefly summarize previous work

on related fields.

ToF Motion Artifact Correction. Early methods on mo-
tion compensation used detect-and-repair approaches [27,
12], e.g. by performing bilateral filtering [21]. One of the
first methods to resolve movement artifacts using optical
flow was introduced by Lindner et al. [20] who aim to tackle
the cross modality through a correction scheme to compute
intensity images from two-tap captures, which can be used
as input to a standard OF algorithm. Based on this method,
Hoegg et al. [13] derived optimizations for the OF predic-
tion algorithm by incorporating motion detection and re-
fining the spatial consistency to achieve real-time perfor-
mance. The performance of these approaches was further
improved with the calibration of Gottfried et al. [9].

The first learned approach was presented by Guo et
al. [10], who provide methods to correct errors for the
Kinect2 sensor, including an encoder-decoder network for
OF prediction. To enable the supervised learning of mo-
tion compensation, a specific dataset is generated, which al-
lows for simulating linear movements in the image domain,
while separating the motion of foreground and background.
Contrarily, we propose a weakly supervised training, which
does not require flow labels, and instead uses ToF depths for
supervision, which are available in existing iToF datasets.

Optical Flow. Recent works on OF regression rely on
neural networks, which have proven to outperform tradi-
tional approaches [29]. The typical design, using shared
image encoders and a latent cost volume, was first intro-
duced Dosovitskiy et al. [8] in their FlowNetC architecture,
alongside the FlowNetS network, which uses a encoder de-
coder architecture. Subsequent, a large literature on various
applications [32, 19] and formulations [2, 14] in the field
of motion estimation emerged. In order to reduce the com-
putational costs, Sun et al. [29] introduced a hierarchical
architecture with coarse-to-fine warping in their Pyramid-
Warping-Cost-volume (PWC) network. This design was
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further re�ned by Konget al. [18] in their FastFlowNet
(FFN) architecture, which reduced the computational com-
plexity and achieves fast inference times.

To overcome the need of generating ground truth �ows
for a supervised training, unsupervised approaches [15, 25,
31, 14] optimize the photometric consistency between im-
ages and apply regularizations to re�ne the �ow prediction.

ToF Correction. The occurrence of Multi-Path-
Interference (MPI) is the main source of errors in
iToF depth reconstructions. Consequently, existing works
on correcting iToF data focus on removing MPI artifacts.
As with OF prediction, 2D neural networks have proven to
achieve high noise removal performance [1, 22, 28, 10, 7].
However, also other learned approaches have been in-
vestigated recently, such as reconstructing the transient
response [4, 11] or using 3D point networks [26].

4. Method

In this work we propose a weak supervision of an OF
network using the ToF-depthdT oF as label, without pro-
viding ground truth �ow vector �elds. In order to enable
training using depth labels, the phase wrapping discontinu-
ities in Eq. (1) of thearctan function require consideration,
and regularizations on the �ow prediction need to be estab-
lished to predict consistent �ows without direct supervision.

We consider an OF networkg : (f mi gN � 1
i =0 ; mN ) !

f Vi gN � 1
i =0 , which predicts a set of optical �owsVi for a set

of measurementsmi , in order to align them to a measure-
ment mN taken at the reference time step. The standard
photometric loss in this setting would be given as

m̂i = warp(mi ; Vi ) (6)

L photo =
X

i

km̂i � mGT
i k1; (7)

wheremGT
i is the measurement taken at the same time step

asmN .
Instead, we propose to supervise the networkg indirectly

by computing the loss on the reconstructed depthdT oF .
To increase the numerical stability we formulate the recon-
structed deptĥd as

s = sign(m̂0 � m̂2) (8)

d̂ =
c

4�f
arctan

�
m̂3 � m̂1

m̂0 � m̂2 + s � �

�
; (9)

L T oF = kd̂ � dT oF k1; (10)

which avoids singularities as the denominator in Eq. (9) is
strictly positive for� > 0. The implementation of Eq. 10 on
commonly used learning packages with auto-differentiable
features, such as Pytorch [24] or JAX [3], allows to train the
�ow network g in a weakly-supervised fashion.

4.1. Phase Unwrapping

The phase wrapping in the above formulation can be
tackled by generating multiple candidate depthsd̂k = d̂ +
k � dmax and using the one closest to the label as prediction

d̂k = d̂ + k � dmax (11)

L T oF;P U = min fk d̂k � dT oF k1
�
� k 2 Zg: (12)

As bothd̂ anddT oF are in the range of[0; dmax ), the candi-
date space is reduced tok 2 f� 1; 0; 1g and the minimiza-
tion in Eq. (12) can be realized by a simple lookup table

d̂ � dT oF 2 (� dmax ; dmax =2] : k = � 1; (13)

d̂ � dT oF 2 (� dmax =2; dmax =2] : k = 0 ; (14)

d̂ � dT oF 2 (dmax =2; dmax ) : k = 1 : (15)

However, during training only the gradients ofL T oF;P U are
relevant, which can be derived from the lookup table as

rL T oF;P U =

(
rL T oF ; 0 � L T oF < d max =2;

�rL T oF ; L T oF � dmax =2;

(16)

and can thus be directly computed from Eq. (10). This al-
lows a computational cheap and elegant implementation of
the phase unwrapping, by only adjusting the gradients of
L T oF , Eq. (10), based on the conditions in Eq. (16) in the
backpropagation step during the training ofg.

4.2. Regularization

By regularizing the predictions, additional constraints
for the predicted �owsVi are established, which enables
the network to produce coherent predictions without using
�ow labels. We use two additional regularization losses, a
smoothing lossL smooth and an edge-aware lossL edge.

For smoothing we adapt the formulation of Jon-
schkowskiet al. [15] to our setting

L smooth =
X

i;j

exp
�

� �

�
�
�
�
@mi

@xj

�
�
�
�

�
�

�
�
�
�
@Vi
@xj

�
�
�
� ; (17)

where� is an edge weighting factor andx0; x1 are the two
image dimensions. This loss penalizes high gradients onVi

in homogeneous regions ofmi , i.e. regions wheremi has
small gradients. The intuition ofL smooth is that homoge-
neous regions are expected to move in the same direction.

To further regularize the network to predict correctly
aligned object boundaries, we introduce an edge-aware loss
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Figure 2. Overview over the loss functions used in this work. Our main loss is the ToF-lossL T oF (right), which is computed on the
reconstructed ToF depth using a differentiable operation, and is adapted to provide phase unwrapped gradients. To constrain the �ow
prediction the lossL smooth (top) is used to regularize the �ow, and an additional regularization on the warped imagem i is given through
the lossL edge (center). Finally, the lossL sim aims to create consistency between the latent representations inside the network. Note: The
lossesL T oF andL sim are computed over alli . This �gure shows the single-tap case, where only one measurement is taken per time step.

L edge =
X

i;j

exp

0

@ � 1

� +
�
�
� @mN

@xj

�
�
�

1

A �
1�

�
� @m̂ i

@xj

�
�
� + s

; (18)

where� is a small constant for numerical stability and the
shift s is used to provide an upper bound on the gradients
of L edge. This loss penalizes small gradients in the warped
measurementŝmi in regions wheremN has large gradients,
i.e. regions wheremN has edges. The intuition ofL edge is
that boundaries of objects can be expected to create edges
in the measurements independent of the modality.

Note thatL smooth acts on the �owsVi whereasL edge is
computed on the warped measurementsm̂i , see Fig. 2.

4.3. Cross Modality

To guide the network towards learning latent representa-
tions that are robust to the input modality, we make use of
a latent similarity loss, inspired by the formulation of con-
trastive learning,

L sim =
X

i 6= j

L
�
Fi ; Fj

�
; (19)

where L is a similarity loss, e.g. L 1; L 2, the cosine-
similarity or a cost function, andFi is the latent vector in
g(mi ) used for cost-volume computation, see Fig. 2.

During training we optimize the similarity loss on static
scenes, without motion. An overview of all losses and their
integration in the computational �ow are shown in Fig. 2.

4.4. Network Architecture

As OF backbone we investigate two networks with dif-
ferent architectures, the Motion Module (MOM), which
was introduced by Guoet al. [10] for ToF motion correc-
tion, and the FFN of Konget al. [18] which is a lightweight
network with on-par performance to State-of-the-Art OF
networks. The MOM network is an encoder-decoder net-
work based on FlowNetS [8], while the FFN integrates a
latent cost volume and is based of the PWC network. Both
networks allow for fast evaluation times and low memory
consumption which enables us to predict multiple �ows.

While the �ow prediction of the MOM network is rather
straightforward,i.e. it takes the setf mi gN

i =0 as input and
predicts all �owsf Vi gN

i =0 at once, we will brie�y describe
how we execute the FFN in the following. Please note, that
the computations of FFN are realized on a hierarchical fea-
ture pyramid, but for compact notation we neglect the hier-
archy levels in the following description.

The FFN consists of the common building blocks, an im-
age encoderE , a cost volume computationC and a �ow
prediction decoderD . Given the measurementsf mi gN

i =0 ,
we encode each measurementmi into a latent vectorFi =
E(mi ). The latent vectors are then used to compute cost
volumes for each pairing with the last measurementmN ,
i.e. ci = C(Fi ; FN ) for i = 1 ; : : : ; N � 1. The decoder
then predicts the �ows using pairs of cost volumes and la-
tent vectors as inputVi = D(Fi ; ci ), the process for a single
image pair is also shown on the left of Fig. 2. After warp-
ing the measurementmi , parts of the image might remain
empty, as no pixels were warped to this region, these regions
are referred to as masked.
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Figure 3. Motion compensation results in the single frequency single tap case. Both pre-trained networks and our method resolve the
motion artifacts, however our method improves performance over the pre-trained networks. Moreover, the UFlow method is not able to
correct the motion artifacts. However, while the camera is static and only the center object is moving, all methods have some tendency to
move the background, which introduces additional artifacts. (Empty regions after warping regions are shown in black.)

In this formulation the network only considers the two
measurementsmi ; mN to computeVi . Although the other
measurements contain additional information about the
movement, the above formulation allows to share the en-
coder and decoder networks for all measurements and does
not increase the number of parameters.

We further apply an instance normalization to the input
of the network, as also used in the ToF error correction ap-
proach of Suet al. [28], which does not affect the depth
reconstruction in Eq. (2), as it is invariant to uniform scal-
ing and translation of the measurements.

In case of multi-tap sensors we change the input dimen-
sion of the encoderE such that it receives all measurements
captured at the same time step as input.

5. Experiments

In our experiments we train instances of both FFN and
MOM using the loss functions described in Sec. 4. In the
case of the MOM network we do not use the similarity loss
L sim , as the network does not produce latent vectorsFi due
to its different architectural design. We compare against
using pre-trained instances on RGB data of FFN and and
also the larger PWC [29], which needs� 8 times the com-
pute [18]. In the case of multi-tap sensors we additionally
compare against the Lindner method [20] in combination
with the pre-trained instances of FFN and PWC. Further, we
compare against the UFlow method [15], which is a method
to train OF networks in an unsupervised fashion, and uses
the PWC as backbone. We train the UFlow method on the
same dataset as our method.

Dataset. We conduct the experiments on the CB-dataset
of Schellinget al. [26], as it contains raw measurements

Method L photo L T oF mask

S
F

1T
ap

Input 50.09 16.87 -
FFN 54.21 14.63 12.40%
PWC 49.16 13.70 4.12%
UFlow 58.71 12.76 3.24%

Ours(MOM) 34.64 7.64 0.97%
Ours(FFN) 23.27 5.81 1.60%

S
F

2T
ap

Input 34.45 5.93 -
FFN 29.83 5.44 6.18%
PWC 19.77 4.03 3.55%
UFlow 38.22 4.90 2.07%
Lindner (FFN) 21.01 4.22 2.35%
Lindner (PWC) 18.11 3.85 2.12%

Ours(MOM) 24.67 3.25 0.73%
Ours(FFN) 17.22 3.66 0.56%

Table 1. Results for single frequency single-tap (SF 1Tap) and two
tap (SF 2Tap). The pre-trained networks, FFN and PWC, and the
unsupervised UFlow method achieve only low correction rates in
most cases. The Lindner method reduces the error notably, espe-
cially when using the larger PWC as backbone, still it is outper-
formed by our proposed method on smaller backbones.

mi for three different frequencies. It consists of 143
scenes each rendered from 50 viewpoints along a camera
trajectory, which allows to simulate real movements that
change the point of view. As the CB-Dataset only incor-
porates static scene geometries we generated 14 additional
scenes with moving objects using the same data simula-
tion pipeline, to increase the variation of movements in the
dataset. We divide the dataset using the original training,
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