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Abstract

Indirect Time-of-Flight (iToF) cameras are a widespread
type of 3D sensor, which perform multiple captures to ob-
tain depth values of the captured scene. While recent ap-
proaches to correct iToF depths achieve high performance
when removing multi-path-interference and sensor noise,
little research has been done to tackle motion artifacts. In
this work we propose a training algorithm, which allows to
supervise Optical Flow (OF) networks directly on the re-
constructed depth, without the need of having ground truth
flows. We demonstrate that this approach enables the train-
ing of OF networks to align raw iToF measurements and
compensate motion artifacts in the iToF depth images. The
approach is evaluated for both single- and multi-frequency
sensors as well as multi-tap sensors, and is able to outper-
form other motion compensation techniques.

1. Introduction

Time-of-Flight (ToF) cameras are sensors that aim to
capture depth images by measuring the time the light needs
to travel from a light source on the camera to an object and
back to the camera sensor. Apart from direct ToF cam-
eras, such as LiDAR, which register the time of incoming
reflections of a light pulse at a high temporal resolution, an-
other common and cost-efficient approach are indirect ToF
(iToF) cameras, which do not require as precise measur-
ing devices. One realization of iToF devices are Amplitude
Modulated Continuous Wave (AMCW) ToF sensors, as for
example used in the Kinect system. These sensors contin-
uously illuminate the scene with a periodically modulated
light signal and aim to retrieve the phase offset between the
emitted and the retrieved signal, which gives information
about the travel time of the signal [12]. In order to retrieve
the phase offset it is necessary to perform multiple captures,
which makes this approach sensible to movements of both,
the camera and the objects in the illuminated scene. As
the measurements are taken with differing sensor settings,
so called multi modality, standard Optical Flow (OF) al-
gorithms achieve only low performance, and hence require
adaptation. While there are works that investigate the com-

pensation of motion using OF, they are only applicable to
specific sensor types [20, 13] or require carefully designed
datasets [10] to train OF networks. As a result, it is still
a common approach to merely detect motion artifacts and
mask the affected pixels in the final depth image, as is for
example realized by the LF2-algorithm [30] for the Kinect
sensor.

In this work, we propose a training algorithm for OF net-
works which allows to supervise the flow prediction using
the ToF depth image, without the need to directly supervise
the predicted flow, see Fig. 1. To this end, we analyze the
ToF depth computation to provide reliable and stable gra-
dients during training. Further, we introduce a set of reg-
ulatory losses, which guide the network towards predicting
flows, that are consistent with the underlying images.

2. Technical Background
In this section, we briefly describe iToF cameras.

ToF Working Principle. An AMCW iToF camera emits
a modulated light signal s(t), which is correlated at the cam-
era sensor with a phase shifted version of the emitted signal
s(t + θ) during the exposure time. The resulting measure-
ment m is repeated sequentially for different phase shifts
θ, from which the distance d is retrieved indirectly by es-
timating the phase shift ∆φ of the signal s when arriving
at the sensor. In the common case of four measurements
m0, . . . ,m3 at θ ∈ {0, π/2, π, 3π/2}, the distance d is re-
trieved as

∆φ = arctan

(
m3 −m1

m0 −m2

)
, (1)

dToF =
c ·∆φ

4πf
, (2)

where c is the speed of light, and f is the modulation fre-
quency of the signal s [12]. Due to the periodic nature of
Eq. (1), the reconstructed dToF is only unambiguous up to
a maximum distance of

dmax = c/(2f), (3)

specifically, dToF = d mod dmax, where the distance d
is referred to as depth, as is common practice in the area
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Figure 1. Illustration of the flow estimation. Given iToF measurements at subsequent time steps, a network is used to predict optical flows,
in order to align the images to the reference image (bottom row). From the warped measurements a ToF depth image can be reconstructed.
We propose to supervise the training directly on this ToF depth, and propagate gradients through the ToF depth computation. This figure
shows the single frequency, single-tap case with four measurements.

of ToF imaging. The so called phase wrapping of dToF

is typically resolved by using additional measurements at
different frequencies f [12].

However Eq. (2) is based on the assumptions that, (a)
only the direct reflection s(t+∆φ) is captured and (b) the
scene is static between the different captures. While (a) has
been dealt with to a large extent in recent work on correcting
iToF depths [1, 22, 26], only little research has been done
to reduce motion artifacts stemming from (b).

Multi-Tap Sensors. A realization of iToF sensors are so
called multi-tap sensors, which are able to capture multi-
ple measurements of mθ in parallel. The most widespread
approach are two-tap sensors, which allow the capture of
mA,i = mi and mB,i = mi+2 at the same time, by sort-
ing the electrons generated by incoming photons into two
quantum wells using a modulated electric field [27]. Inter-
nally, these two measurements are used to compensate for
hardware inaccuracies and reduce noise [13] by computing:

mi = mA,i −mB,i. (4)

In order to make direct use of mA,mB in Eq. (1), it is neces-
sary to calibrate the differences in the photo responses [27]

mA,i = rθ(mB,i+2), (5)

which doubles the effective frame rate, and reduce, but not
eliminate, motion-artifacts. Recently also prototypes for
four-tap sensors have been developed [6, 16], which in the
future might eliminate motion artifacts in single-frequency
captures, but not in multi-frequency sensors.

3. Related Work
In this section we will briefly summarize previous work

on related fields.

ToF Motion Artifact Correction. Early methods on mo-
tion compensation used detect-and-repair approaches [27,
12], e.g. by performing bilateral filtering [21]. One of the
first methods to resolve movement artifacts using optical
flow was introduced by Lindner et al. [20] who aim to tackle
the cross modality through a correction scheme to compute
intensity images from two-tap captures, which can be used
as input to a standard OF algorithm. Based on this method,
Hoegg et al. [13] derived optimizations for the OF predic-
tion algorithm by incorporating motion detection and re-
fining the spatial consistency to achieve real-time perfor-
mance. The performance of these approaches was further
improved with the calibration of Gottfried et al. [9].

The first learned approach was presented by Guo et
al. [10], who provide methods to correct errors for the
Kinect2 sensor, including an encoder-decoder network for
OF prediction. To enable the supervised learning of mo-
tion compensation, a specific dataset is generated, which al-
lows for simulating linear movements in the image domain,
while separating the motion of foreground and background.
Contrarily, we propose a weakly supervised training, which
does not require flow labels, and instead uses ToF depths for
supervision, which are available in existing iToF datasets.

Optical Flow. Recent works on OF regression rely on
neural networks, which have proven to outperform tradi-
tional approaches [29]. The typical design, using shared
image encoders and a latent cost volume, was first intro-
duced Dosovitskiy et al. [8] in their FlowNetC architecture,
alongside the FlowNetS network, which uses a encoder de-
coder architecture. Subsequent, a large literature on various
applications [32, 19] and formulations [2, 14] in the field
of motion estimation emerged. In order to reduce the com-
putational costs, Sun et al. [29] introduced a hierarchical
architecture with coarse-to-fine warping in their Pyramid-
Warping-Cost-volume (PWC) network. This design was
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further refined by Kong et al. [18] in their FastFlowNet
(FFN) architecture, which reduced the computational com-
plexity and achieves fast inference times.

To overcome the need of generating ground truth flows
for a supervised training, unsupervised approaches [15, 25,
31, 14] optimize the photometric consistency between im-
ages and apply regularizations to refine the flow prediction.

ToF Correction. The occurrence of Multi-Path-
Interference (MPI) is the main source of errors in
iToF depth reconstructions. Consequently, existing works
on correcting iToF data focus on removing MPI artifacts.
As with OF prediction, 2D neural networks have proven to
achieve high noise removal performance [1, 22, 28, 10, 7].
However, also other learned approaches have been in-
vestigated recently, such as reconstructing the transient
response [4, 11] or using 3D point networks [26].

4. Method
In this work we propose a weak supervision of an OF

network using the ToF-depth dToF as label, without pro-
viding ground truth flow vector fields. In order to enable
training using depth labels, the phase wrapping discontinu-
ities in Eq. (1) of the arctan function require consideration,
and regularizations on the flow prediction need to be estab-
lished to predict consistent flows without direct supervision.

We consider an OF network g : ({mi}N−1
i=0 ,mN ) →

{Vi}N−1
i=0 , which predicts a set of optical flows Vi for a set

of measurements mi, in order to align them to a measure-
ment mN taken at the reference time step. The standard
photometric loss in this setting would be given as

m̂i = warp(mi, Vi) (6)

Lphoto =
∑
i

∥m̂i −mGT
i ∥1, (7)

where mGT
i is the measurement taken at the same time step

as mN .
Instead, we propose to supervise the network g indirectly

by computing the loss on the reconstructed depth dToF .
To increase the numerical stability we formulate the recon-
structed depth d̂ as

s = sign(m̂0 − m̂2) (8)

d̂ =
c

4πf
arctan

(
m̂3 − m̂1

m̂0 − m̂2 + s · ϵ

)
, (9)

LToF = ∥d̂− dToF ∥1, (10)

which avoids singularities as the denominator in Eq. (9) is
strictly positive for ϵ > 0. The implementation of Eq. 10 on
commonly used learning packages with auto-differentiable
features, such as Pytorch [24] or JAX [3], allows to train the
flow network g in a weakly-supervised fashion.

4.1. Phase Unwrapping

The phase wrapping in the above formulation can be
tackled by generating multiple candidate depths d̂k = d̂ +
k · dmax and using the one closest to the label as prediction

d̂k = d̂+ k · dmax (11)

LToF,PU = min{∥d̂k − dToF ∥1
∣∣ k ∈ Z}. (12)

As both d̂ and dToF are in the range of [0, dmax), the candi-
date space is reduced to k ∈ {−1, 0, 1} and the minimiza-
tion in Eq. (12) can be realized by a simple lookup table

d̂− dToF ∈ (−dmax, dmax/2] : k = −1, (13)

d̂− dToF ∈ (−dmax/2, dmax/2] : k = 0, (14)

d̂− dToF ∈ (dmax/2, dmax) : k = 1. (15)

However, during training only the gradients of LToF,PU are
relevant, which can be derived from the lookup table as

∇LToF,PU =

{
∇LToF , 0 ≤ LToF < dmax/2,

−∇LToF , LToF ≥ dmax/2,

(16)

and can thus be directly computed from Eq. (10). This al-
lows a computational cheap and elegant implementation of
the phase unwrapping, by only adjusting the gradients of
LToF , Eq. (10), based on the conditions in Eq. (16) in the
backpropagation step during the training of g.

4.2. Regularization

By regularizing the predictions, additional constraints
for the predicted flows Vi are established, which enables
the network to produce coherent predictions without using
flow labels. We use two additional regularization losses, a
smoothing loss Lsmooth and an edge-aware loss Ledge.

For smoothing we adapt the formulation of Jon-
schkowski et al. [15] to our setting

Lsmooth =
∑
i,j

exp

(
−λ

∣∣∣∣∂mi

∂xj

∣∣∣∣) ·
∣∣∣∣∂Vi

∂xj

∣∣∣∣ , (17)

where λ is an edge weighting factor and x0, x1 are the two
image dimensions. This loss penalizes high gradients on Vi

in homogeneous regions of mi, i.e. regions where mi has
small gradients. The intuition of Lsmooth is that homoge-
neous regions are expected to move in the same direction.

To further regularize the network to predict correctly
aligned object boundaries, we introduce an edge-aware loss
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Figure 2. Overview over the loss functions used in this work. Our main loss is the ToF-loss LToF (right), which is computed on the
reconstructed ToF depth using a differentiable operation, and is adapted to provide phase unwrapped gradients. To constrain the flow
prediction the loss Lsmooth (top) is used to regularize the flow, and an additional regularization on the warped image mi is given through
the loss Ledge (center). Finally, the loss Lsim aims to create consistency between the latent representations inside the network. Note: The
losses LToF and Lsim are computed over all i. This figure shows the single-tap case, where only one measurement is taken per time step.

Ledge =
∑
i,j

exp

 −1

ϵ+
∣∣∣∂mN

∂xj

∣∣∣
 · 1∣∣∣∂m̂i

∂xj

∣∣∣+ s
, (18)

where ϵ is a small constant for numerical stability and the
shift s is used to provide an upper bound on the gradients
of Ledge. This loss penalizes small gradients in the warped
measurements m̂i in regions where mN has large gradients,
i.e. regions where mN has edges. The intuition of Ledge is
that boundaries of objects can be expected to create edges
in the measurements independent of the modality.

Note that Lsmooth acts on the flows Vi whereas Ledge is
computed on the warped measurements m̂i, see Fig. 2.

4.3. Cross Modality

To guide the network towards learning latent representa-
tions that are robust to the input modality, we make use of
a latent similarity loss, inspired by the formulation of con-
trastive learning,

Lsim =
∑
i̸=j

L
(
Fi, Fj

)
, (19)

where L is a similarity loss, e.g. L1, L2, the cosine-
similarity or a cost function, and Fi is the latent vector in
g(mi) used for cost-volume computation, see Fig. 2.

During training we optimize the similarity loss on static
scenes, without motion. An overview of all losses and their
integration in the computational flow are shown in Fig. 2.

4.4. Network Architecture

As OF backbone we investigate two networks with dif-
ferent architectures, the Motion Module (MOM), which
was introduced by Guo et al. [10] for ToF motion correc-
tion, and the FFN of Kong et al. [18] which is a lightweight
network with on-par performance to State-of-the-Art OF
networks. The MOM network is an encoder-decoder net-
work based on FlowNetS [8], while the FFN integrates a
latent cost volume and is based of the PWC network. Both
networks allow for fast evaluation times and low memory
consumption which enables us to predict multiple flows.

While the flow prediction of the MOM network is rather
straightforward, i.e. it takes the set {mi}Ni=0 as input and
predicts all flows {Vi}Ni=0 at once, we will briefly describe
how we execute the FFN in the following. Please note, that
the computations of FFN are realized on a hierarchical fea-
ture pyramid, but for compact notation we neglect the hier-
archy levels in the following description.

The FFN consists of the common building blocks, an im-
age encoder E, a cost volume computation C and a flow
prediction decoder D. Given the measurements {mi}Ni=0,
we encode each measurement mi into a latent vector Fi =
E(mi). The latent vectors are then used to compute cost
volumes for each pairing with the last measurement mN ,
i.e. ci = C(Fi, FN ) for i = 1, . . . , N − 1. The decoder
then predicts the flows using pairs of cost volumes and la-
tent vectors as input Vi = D(Fi, ci), the process for a single
image pair is also shown on the left of Fig. 2. After warp-
ing the measurement mi, parts of the image might remain
empty, as no pixels were warped to this region, these regions
are referred to as masked.
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Figure 3. Motion compensation results in the single frequency single tap case. Both pre-trained networks and our method resolve the
motion artifacts, however our method improves performance over the pre-trained networks. Moreover, the UFlow method is not able to
correct the motion artifacts. However, while the camera is static and only the center object is moving, all methods have some tendency to
move the background, which introduces additional artifacts. (Empty regions after warping regions are shown in black.)

In this formulation the network only considers the two
measurements mi,mN to compute Vi. Although the other
measurements contain additional information about the
movement, the above formulation allows to share the en-
coder and decoder networks for all measurements and does
not increase the number of parameters.

We further apply an instance normalization to the input
of the network, as also used in the ToF error correction ap-
proach of Su et al. [28], which does not affect the depth
reconstruction in Eq. (2), as it is invariant to uniform scal-
ing and translation of the measurements.

In case of multi-tap sensors we change the input dimen-
sion of the encoder E such that it receives all measurements
captured at the same time step as input.

5. Experiments
In our experiments we train instances of both FFN and

MOM using the loss functions described in Sec. 4. In the
case of the MOM network we do not use the similarity loss
Lsim, as the network does not produce latent vectors Fi due
to its different architectural design. We compare against
using pre-trained instances on RGB data of FFN and and
also the larger PWC [29], which needs ≈8 times the com-
pute [18]. In the case of multi-tap sensors we additionally
compare against the Lindner method [20] in combination
with the pre-trained instances of FFN and PWC. Further, we
compare against the UFlow method [15], which is a method
to train OF networks in an unsupervised fashion, and uses
the PWC as backbone. We train the UFlow method on the
same dataset as our method.

Dataset. We conduct the experiments on the CB-dataset
of Schelling et al. [26], as it contains raw measurements

Method Lphoto LToF mask

SF
1T

ap
Input 50.09 16.87 -
FFN 54.21 14.63 12.40%
PWC 49.16 13.70 4.12%
UFlow 58.71 12.76 3.24%

Ours(MOM) 34.64 7.64 0.97%
Ours(FFN) 23.27 5.81 1.60%

SF
2T

ap

Input 34.45 5.93 -
FFN 29.83 5.44 6.18%
PWC 19.77 4.03 3.55%
UFlow 38.22 4.90 2.07%
Lindner (FFN) 21.01 4.22 2.35%
Lindner (PWC) 18.11 3.85 2.12%

Ours(MOM) 24.67 3.25 0.73%
Ours(FFN) 17.22 3.66 0.56%

Table 1. Results for single frequency single-tap (SF 1Tap) and two
tap (SF 2Tap). The pre-trained networks, FFN and PWC, and the
unsupervised UFlow method achieve only low correction rates in
most cases. The Lindner method reduces the error notably, espe-
cially when using the larger PWC as backbone, still it is outper-
formed by our proposed method on smaller backbones.

mi for three different frequencies. It consists of 143
scenes each rendered from 50 viewpoints along a camera
trajectory, which allows to simulate real movements that
change the point of view. As the CB-Dataset only incor-
porates static scene geometries we generated 14 additional
scenes with moving objects using the same data simula-
tion pipeline, to increase the variation of movements in the
dataset. We divide the dataset using the original training,
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Figure 4. Motion compensation results in the multi frequency four-tap case, for a scene with moving camera. Our method achieves the best
motion compensation, followed by Lindner’s method on the more powerful backbone PWC, although Lindner’s method introduces more
additional errors. Both the pre-trained PWC and the UFlow method fail in this case. (Empty regions after warping are shown in black.)

validation and testing split, and further divide the additional
scenes into 10 training scenes, and 2 each for testing and
validation, whereby we use the 20MHz measurements.

5.1. Single Frequency Motion Compensation

For the single frequency experiment we also use the
20MHz measurements of the datasets. In the case of single-
tap we take the four measurements from four subsequent
time steps, in the case two-tap we take the pairs (m0,m2)
and (m1,m3) from two times steps. We measure LToF ,
the photometric loss Lphoto and the percentage of masked
pixels after warping, and report results on the test set in
Tab. 1. We find that the networks trained with our method
achieve better results than the pre-trained OF networks and
the UFlow method. Results for the single tap case can be
seen in Fig. 3. The results of Lindner’s method come close
to our method, but only when using the larger backbone
network PWC. On the same backbone FFN the gap in per-
formance is larger. Additionally, in the simple setting of
two-taps, and thus also two time steps, the simple MOM
backbone results in better performance than the more com-
plex FFN backbone, both trained with our method.

Further, we observe that the UFlow method increases
the photometric loss, which we attribute to the fact that the
method aims to minimize the photometric loss between the
images of different modalities. Additionally, UFlow has a
tendency to mask out areas affected by motion, as is shown
in Fig. 4, which leads to a reduced ToF loss, without cor-
recting the errors.

5.2. Multi Frequency Motion Compensation

For the multi frequency experiment we use the three fre-
quencies 20MHz, 50MHz and 70MHz of the datasets. In the
case of single-tap, we take the twelve measurements from

Method Lphoto LToF mask

M
F

1T
ap

Input 113.73 19.68 -
FFN 124.88 25.06 10.76%
PWC 83.15 16.01 8.91%
UFlow 136.55 13.86 7.76%

Ours(MOM) 65.91 11.92 1.43%
Ours(FFN) 80.43 13.77 0.34%

M
F

2T
ap

Input 69.06 8.17 -
FFN 78.33 9.71 5.90%
PWC 49.23 7.51 4.02%
UFlow 81.45 5.95 4.82%
Lindner (FFN) 40.26 5.60 2.55%
Lindner (PWC) 35.24 5.16 1.80%

Ours(MOM) 44.68 4.98 0.64%
Ours(FFN) 30.71 4.43 0.32%

M
F

4T
ap

Input 40.42 5.26 -
FFN 57.54 6.93 0.06%
PWC 31.09 5.41 0.06%
UFlow 51.10 4.17 1.96%
Lindner (FFN) 27.52 3.94 0.06%
Lindner (PWC) 22.17 3.49 0.06%

Ours(MOM) 29.64 3.11 0.48%
Ours(FFN) 27.14 3.03 0.08%

Table 2. Results for multi frequency single-tap (MF 1Tap), two-tap
(MF 2Tap) and four-tap (MF 4Tap). In this setting with stronger
modality changes, the pre-trained networks fail in most cases.Our
method is again closely followed by Lindner’s method on the
larger backbone PWC.
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Method MAE Rel. Error

SF
1T

ap

Input 39.49 100.00%
CFN 19.39 49.10%
CFN + Ours(FFN) 11.47 29.05%
DeepToF 16.65 42.17%
DeepToF + Ours(FFN) 15.11 38.26%

M
F

2T
ap

Input 10.65 100.00%
CFN 6.71 63.01%
CFN + Ours(FFN) 5.54 52.02%
E2E 10.44 98.03%
E2E + Ours(FFN) 8.27 77.65%
RADU 11.21 105.26%
RADU + Ours(FFN) 8.00 75.12%

Table 3. Results of motion, multi-path-interference and sensor
noise compensation, for the single frequency single tap (SF 1Tap)
and the multi frequency two-tap (MF 2Tap) case. All methods
benefit from the motion correction using our method.

twelve subsequent time steps. In the two-tap case, we take
pairs (m0,m2) and (m1,m3) from six time steps. Lastly,
in the case of four-tap, we use three time steps, one per
frequency. The results on the test set for both LToF and
the photometric loss Lphoto are reported in Tab. 2, and are
shown for the four-tap case in Fig. 4.

The findings from the single frequency experiment can
also be observed in this setting, with our approach achiev-
ing the best performance followed by Lindner’s method.
Further, the FFN trained with our method, while still out-
performing the other methods, achieves rather low perfor-
mance in the single tap setting, which is arguably the hard-
est case with the highest number of time steps, and thus
the largest motion, and additionally the lowest input dimen-
sionality of only one tap, which might make it harder for
the encoder E to extract modality invariant features.

Additionally, the pre-trained OF networks have a ten-
dency to fail in these settings, especially the FFN, which
might come from the larger modality gap of measurements
taken at different frequencies, as can also be seen in Fig. 4.

5.3. Motion Compensation and Error Correction

To measure the influence on downstream error compen-
sation techniques, we train instances of ToF correction net-
works on the output of our model. For this experiment, the
single frequency single tap case and the multi frequency
two-tap case are considered. We use the single frequency
approaches DeepToF [22] and an adapted CFN [1] in the
single frequency case, and the multi-frequency approaches
CFN, E2E [28] and RADU [26] in the multi frequency
case. For comparison we also train instances of the net-
works without performing motion compensation, and report
results on the test set in Tab. 3
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Figure 5. Results of combined motion and MPI correction using
the CFN network. Without additional motion compensation, the
motion artifacts are only partially corrected. In combination with
method they are restricted to the object boundaries.

We observe, that all methods benefit from motion com-
pensation in their input. We further observe that the 2D
networks that frame the task as denoising handle motion ar-
tifacts quite well, see Fig. 5, whereas the more complex ap-
proaches E2E, which formulates a generative image trans-
lation task, and RADU, which operates on 3D point clouds,
struggle in this setting. It is to be remarked, that none of the
approaches were designed to correct motion artifacts.

5.4. Ablations

This section provides ablations on the loss components.

5.4.1 Component Ablation

To investigate the influence of each loss component sep-
arately, we train instances of the FFN network while dis-
abling individual components. Further, we replace the ToF
loss LToF with the photometric loss Lphoto and addition-
ally train an instance using only the ToF loss as baselines.
The results on the validation set are reported in Tab. 4

From the results it can be seen that the combination of all
losses achieves the best performance, and that each com-
ponent reduces the loss. Out of the regulatory losses the
smoothing loss Lsmooth has the highest impact, followed
by the edge-aware loss Ledge and finally the latent similarity

Method Lphoto LToF

Input 70.39 23.71

Lphoto + Lsmooth + Ledge + Lsim 38.65 12.43
LToF 38.42 10.17
LToF + Ledge + Lsim 35.94 9.67
LToF + Lsmooth + Lsim 34.65 8.54
LToF + Lsmooth + Ledge 32.57 7.87

LToF + Lsmooth + Ledge + Lsim 28.76 7.21

Table 4. Ablation on the loss components in the single frequency
single-tap case, using the FFN as OF backbone.
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loss Lsim. Further, the ToF loss yields a large performance
gain compared to the photometric loss, and even without
regularizations achieves a better performance.

5.4.2 Similarity Loss Function

As the definition of the latent similarity loss Lsim in
Eq. (19) was kept general, it allows for the usage of dif-
ferent similarity measures L. We investigate the following
functions on their performance, the standard L1 and L2 dis-
tances, the cost function that is used in the cost volume com-
putation and the cosine similarity

L1: ∥Fi − Fj∥1, (20)
L2: ∥Fi − Fj∥2, (21)

Cost: − Fi · Fj , (22)

Cosine :
−Fi · Fj

∥Fi∥2∥Fj∥2
, (23)

where · denotes the scalar product.
We consider the single frequency single tap and the multi

frequency two-tap case in this ablation, and train instances
of the FFN using the above similarity measures in the simi-
larity loss, together with all other loss components. Further,
we train an instance using no similarity loss as a baseline,
and, in the case of two taps, compare to using Lindner’s
features as input instead of a similarity measure.

From the results, which can be seen in Tab. 5, we find
that the cosine similarity achieves the best performance in
both cases. Additionally, in the multi frequency two-tap
case, the cosine similarity is the only measure that improves
over not using a similarity loss at all, including Lindner’s
method. Consequently, both the use and the choice of the
similarity measure needs careful consideration.

6. Limitations
Although, both backbone OF networks achieve good re-

sults, we experience cases that escape our regularization
losses. For example, the smoothing loss Lsmooth ensures a
continuous flow for an object, however objects are detected
based on their homogeneous appearance, which can fail on

Input (detail) Reference After warp

Figure 6. Example of an object, where our regularizations fail. The
high frequency pattern prevents Lsmooth from enforcing a consis-
tent flow for the object. Due to the repetitive pattern, the network
matches the yellow region in the input image with the cyan region
in the reference image, and the object gets distorted.

SF 1Tap MF 2Tap
Method Lphoto LToF Lphoto LToF

Input 70.39 23.71 93.17 11.98

Lindner - - 45.59 7.48
None 32.57 7.87 48.13 7.36
L1 32.15 7.97 54.27 7.88
L2 34.37 7.61 54.32 7.78
Cost 41.88 10.73 53.98 7.87
Cosine 28.76 7.21 45.49 6.67

Table 5. Ablation on different loss function for Lsim, using FFN
as backbone. On validation set.

high frequency details. While the edge loss Ledge can re-
solve most of the cases, still sometimes wrong parts of the
images are matched, especially when nearby image patches
have a similar appearance, see Fig. 6. We attribute this to
the fact that without access to ground truth flows, such cases
present a local minima during training.

Moreover, while we demonstrated our method on the
largest available iToF dataset [26], this work is restricted
to a synthetic setting as no real world data set containing
raw iToF measurements is currently available.

Lastly, the choice of the backbone network impacts the
performance in different settings, i.e. MOM clearly outper-
forms the FFN backbone in the multi frequency single tap
setting. Additionally, as our contribution is a training algo-
rithm, the execution time is given by the execution time of
the underlying OF network, while it is almost constant in
the different settings for the MOM network, it grows lin-
early with the number of predicted flows for the FFN. As a
consequence it would be desirable to have a OF network for
iToF motion correction with a constant high performance in
this multi-modality multi-frame flow prediction problem.

7. Conclusion

In this work, we presented a training method for OF net-
works to align iToF measurements in order to reduce the
motion artifacts in the reconstructed depth images. To this
end we enable the weakly supervised training on the ToF
loss LToF using a phase unwrapping scheme for gradi-
ent correction. In combination with the regularizing losses
Lsmooth and Ledge which regulate the flow predictions, and
the similarity loss Lsim to resolve the multi-modality, our
method enables training without the need of ground truth
flow labels. The experiments indicate that our method is
able to compensate motion artifacts for both single and
multi frequency settings as well as single and multi tap sen-
sors. Further, our training method was demonstrated for
two backbone OF networks, with different architectures,
and was able to outperform existing methods.
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A. Contents

This supplementary material provides additional infor-
mation about our method in Sec. B and Sec. C and further
details on how the experiments were conducted in Sec. D.
Finally, we show additional qualitative results in Sec. E.

Our code, trained networks and the additional scenes to
expand the CB-dataset [26], containing moving objects, will
be made publicly available online pending acceptance.

B. Phase Unwrapping of the ToF Loss Func-
tion

In this section we provide more information on the phase
unwrapping of the gradients of the ToF loss function LToF ,

which is given through

s = sign(m̂0 − m̂2) (24)

d̂ =
c

4πf
arctan

(
m̂3 − m̂1

m̂0 − m̂2 + s · ϵ

)
, (25)

LToF = ∥d̂− dToF ∥1, (26)

where m̂i are the iToF measurements after warping, and
ϵ is a small positive constant. While the standard arctan
function has a range limited to a semi-circle (−π/2, π/2),
the sign of the numerator and the denominator in Eq. (25)
can be used to extend the range to a full circle (−π, π]. This
method is commonly referred to as the arctan2 function

x = m̂0 − m̂2, (27)
y = m̂3 − m̂1, (28)

d̂ =
c

4πf
arctan2(y, x+ s · ϵ). (29)

As a consequence, the arctan2 function has multiple
branches, corresponding to the sign of its arguments, as can
be seen in Fig. 7.

The figure also illustrates the difference of dmax/2 be-
tween the two branches in this case. As a result if the
target (red point) is on the different branch than the cur-
rent depth estimate (green point), the direction of the opti-
mization needs to be inverted in order to move the estimate
through the phase wrapping of the arctan 2 function and
change to the correct branch. This is realized by our pro-
posed gradient correction presented in the main paper

∇LToF,PU =

{
∇LToF , 0 ≤ LToF < dmax/2,

−∇LToF , LToF ≥ dmax/2.

(30)

To show the influence on the optimization we conduct a
toy experiment, in which we formulate a simple reconstruc-
tion task. We assume m0,m1,m2 and dToF are given and
the task is to reconstruct the measurement m3 by minimiz-
ing the ToF loss LToF

min
m̂3

LToF (31)

=min
m̂3

∥∥∥∥ c

4πf
arctan2 (m̂3 −m1,m0 −m2)− dToF

∥∥∥∥
1

.

(32)

We initialize m̂0 = 0 and optimize it using simple gradient
descent, with and without applying our gradient correction
method. Without gradient correction only parts initialized
on the correct branch are reconstructed, wheres after gradi-
ent correction all parts can be reconstructed, as is shown in
Fig. 8.
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dmax
d^

dmax
2

m0 - m2 > 0^ ^

m1^ m3^0
Figure 7. Reconstructed depth d̂ dependent on the measurement
m̂0 in the case of a positive denominator. The arctan2 function
changes branches at m̂3 = m̂1, which introduces a discontinuity.
As a result, if the prediction (red point) and the target value (green
point) are on separate branches, the gradient points in the wrong
direction (red arrow), and is corrected by our method (green ar-
row). The branches are separated by dmax/2, in line with Eq. (30).

C. Regularization Losses
This section provides more insights on the effect of the

regularization losses.
Without regularizations the problem of supervising the

four measurements with a single depth is under-determined,
e.g. in Eq. (29) the ratio of y/x is the determining factor,
but not the individual values. While the search space is
already limited when predicting optical flows, as not arbi-
trary values are allowed, but only values from a local neigh-
borhood can be warped to a certain position, still regular-
ization is necessary to further restrict the network predic-
tions. Moreover, unsupervised Optical Flow (OF) networks
require such regularizations in general to achieve competi-
tive performance [15].

In our work we introduced two main regularizations
which measure consistency in the image space. The
smoothing loss Lsmooth measures region consistency be-
tween the predicted flow and the input image, and is ap-
plied before warping. The edge-aware loss Ledge measures
edge consistency between the warped image and the target
image, and is applied after warping.

The impact of these losses on the warped images can be
seen in Fig. 9

D. Experiments
In this section we provide detailed information about the

hyperparameters used for training the networks.

D.1. Implementation

All custom implementations were done in
PyTorch 1.10.+cu102 [24] and Python 3.6.
For the OF networks FFN [18] and PWC [29], and the
warping operation, we use implementations provided in the

PyTorch library ptlflow 0.2.5 [23].

D.2. Motion Compensation

Our Method. Both OF backbone networks FFN and
MOM [10] are trained with the ADAM [17] optimizer using
a learning rate scheduler which decays the learning rate by
a factor 0.5 when the ToF loss on the validation set did not
decrease for 50 epochs.

We augment the input data by simulating shot noise
on the iToF measurements, following the noise model de-
scribed by Schelling et al. [26]. Additionally, we use ran-
dom image rotations by 0◦, 90◦, 180◦, 270◦, random mir-
roring along the image axes, and crop random 512 × 512
image patches during training.

We train the FFN network with the combination of all
losses

LToF + λsmoooth · Lsmooth + λedge · Ledge + λsim · Lsim.
(33)

We compared the following values to select the hyperpa-
rameters: weights λi from {1, 1e-1, 1-e2, 1e-3, 1e-4}, and
the shift parameter s in the edge-aware loss from {1e-2, 1-
e1, 0, 1e1, 1e2, 1e3}. The results reported in the main paper
were achieved with λsmooth = 1, λedge = 1e-1, λsim =
1e-2, s = 1e2 in the single frequency case, and in the multi
frequency case only the similarity weight was changed to
λsim = 1e− 2. In all experiments the cosine similarity was
used in Lsim. In the single frequency experiments we train
with a batch size of 8, and in the multi-frequency experi-
ment with a batch size of 4. The initial learning rate is set
to 1e-3.

For the MOM network we do not use the similarity loss,
as the encoder decoder architecture does not have latent fea-
tures for a cost volume computation, thus we set λsim = 0.
We perform the same hyperparameter tuning as for the FFN
network. The results in the main paper were achieved
withλsmooth = 1, λedge = 1, s = 1e3 in both the single and
the multi-frequency experiments. We train with a batch size
of 1 and an initial learning rate of 1e-5, as recommended by
the authors of MOM [10],

Pre-Trained Networks. The pretrained networks, FFN
and PWC were trained on RGB data and hence require three
input channels. In our experiments we normalize the iToF
measurements to a range of [0, 255] and repeat the the scalar
image three times to match the RBG input. We use weights
pre-trained on the Sintel dataset [5].

UFlow. The UFlow [15] method is trained on the same
data as our method, using the TensorFlow2 implementation
provided by the authors. We use the hyperparameters rec-
ommended in the documentation for custom datasets, which
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Figure 8. Reconstruction of measurement m̂3 by minimizing the ToF loss. Without phase unwrapping (PU) only partial reconstruction is
possible. After correcting the gradients with our method, the phase wrapping is successively resolved by the optimization (right).

correspond to the settings for the Flying Chairs dataset [8]
in the UFlow paper.

Lindner Method. For the Lindner method, we match the
input dimensionality of the pre-trained networks using the
same scheme as above on the intensity computed with Lind-
ner’s method.

D.3. Motion Compensation and Error Correction

We implement the CFN [1] in PyTorch and also adapt
it to the single frequency case by reducing the input di-
mension to one. For the other approaches DeepToF [22],
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m
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without withGT

Figure 9. Effect of the regularization losses on the warped image.
The smoothing loss Lsmooth ensures that pixels that belong to a
visually similar region are moved in the same direction (top row).
With the edge aware loss Ledge the edges of the warped image
align with the target image, preserving object boundaries and de-
tails. (bottom row)

E2E [28] and RADU [26] we use the TensorFlow2 im-
plementations by Schelling et al. [26]. We train all net-
works using the respective hyperparameters reported by
Schelling et al. for their CB-Dataset.

D.4. Ablation: Similarity Loss Function

We train the FFN network with the different similarity
measures in the similarity loss function Lsim and optimize
their weight λsim from {1e1, 1, 1e-1, 1e-2, 1e-3, 1e-4}
for each measure. When training with input generated by
Lindner’s method in the multi frequency two-tap case, we
reduce the network input dimension to one. The other
hyperparameters, including the weights of the other losses,
are set as in the main experiments. The results in the main
paper were achieved with the following weights:
SF 1Tap: L1: 1e-2, L2: 1e-1, Cost: 1e-2, Cosine: 1e-3
MF 2Tap: L1: 1e-3, L2: 1e-2, Cost: 1, Cosine: 1e-3

E. Qualitative Results
Results of our method using the FFN and the MOM net-

work can be seen in Fig. 10, 11, 12 and 13. The figures
show one frame per scene from the test set. To cover both
single and multi frequency and single and multi-tap the two
cases single frequency single tap and multi frequency two
tap are shown.

In Fig. 14 we show additional results for the combined
correction of motion artifacts and Multi-Path-Interference
(MPI) using the CFN as error correction network.
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Figure 10. Results of our method for single frequency single-tap (SF 1Tap, left) and multi frequency two-tap (MF 2Tap, right). The
scenes contain moving objects. First row shows ToF depths, second row shows error maps. Please note that the ToF depths are not phase
unwrapped.
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Figure 11. Results of our method for single frequency single-tap (SF 1Tap, left) and multi frequency two-tap (MF 2Tap, right). First row
shows ToF depths, second row shows error maps. ToF depths are not phase unwrapped.
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Figure 12. Results of our method for single frequency single-tap (SF 1Tap, left) and multi frequency two-tap (MF 2Tap, right). First row
shows ToF depths, second row shows error maps. Please note that the ToF depths are not phase unwrapped.
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Figure 13. Results of our method for single frequency single-tap (SF 1Tap, left) and multi frequency two-tap (MF 2Tap). First row shows
ToF depths, second row shows error maps. Please note that the ToF depths are not phase unwrapped.
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Figure 14. Results of combined motion and MPI correction using the CFN network. First row shows depths, second row shows error maps.
Input in the MF 2Tap case is shown at highest frequency. First scene contains a moving object. Please note that CFN receives input from
all frequencies, which can result in additional motion artifacts in the prediction compared to the high frequency input ToF depth.
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