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Out of the Plane: Flower vs. Star Glyphs
to Support High-Dimensional Exploration

in Two-Dimensional Embeddings
Christian van Onzenoodt, Pere-Pau Vázquez, and Timo Ropinski

Abstract—Exploring high-dimensional data is a common task in many scientific disciplines. To address this task, two-dimensional
embeddings, such as tSNE and UMAP, are widely used. While these determine the 2D position of data items, effectively encoding the first
two dimensions, suitable visual encodings can be employed to communicate higher-dimensional features. To investigate such encodings,
we have evaluated two commonly used glyph types, namely flower glyphs and star glyphs. To evaluate their capabilities for
communicating higher-dimensional features in two-dimensional embeddings, we ran a large set of crowd-sourced user studies using
real-world data obtained from data.gov. During these studies, participants completed a broad set of relevant tasks derived from related
research. This paper describes the evaluated glyph designs, details our tasks, and the quantitative study setup before discussing the
results. Finally, we will present insights and provide guidance on the choice of glyph encodings when exploring high-dimensional data.

Index Terms—Glyph visualization, high-dimensional data visualization, two-dimensional embeddings.
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1 INTRODUCTION

ANALYZING high-dimensional data is a common task
in many scientific disciplines. To make such data

comprehensible to humans, they are often embedded in two
or three dimensions. Although modern dimensionality reduc-
tion (DR) techniques can produce high-quality results and
conserve several high-dimensional features, many relations
are lost during the embedding process [1]. Even though DR is
often referred to as a visualization technique in the machine
learning literature [2], we argue that they are simply visual
mapping techniques. The underlying visual encoding used in
these embeddings has received relatively little attention. We
argue that using appropriate visual encodings could enable
the communication of additional dimensions beyond the two
or three dimensions of the embedding space.

This paper explores the impact of visual encodings
for two-dimensional embeddings by investigating glyph-
based visualization techniques. We aim to discover how
additional dimensions, beyond embedding dimensions, can
be effectively communicated by employing an appropriate
glyph encoding. For this investigation, we focus on flower
and star glyphs, as they are the most commonly used multi-
dimensional glyphs [3], [4], [5]. As illustrated in Figure 1,
these glyphs employ area, i.e., through petal size in flower
glyphs and segment size in star glyphs, as a visual channel
to communicate attributes of interest. Thus, when using
these glyphs to visualize two-dimensional embeddings,
their position encodes the two primary dimensions while
the glyphs communicate additional dimensions. Although
recent visualization systems already use these glyphs to
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communicate high-dimensional data, it is still unknown how
effective they are in doing so [5]. Relevant questions that
desire an answer in this context are, for instance: How many
additional dimensions, if any, can be communicated into
these glyphs? Does the glyph’s shape affect the encoding of
the two primary dimensions? Are there individual strengths
or weaknesses for these glyphs? Based on these and other
questions, we have formulated the guiding hypothesis for
our research: Flower and star glyphs support the communication
of additional dimensions in two-dimensional embeddings.

To investigate this relatively high-level and broad hy-
pothesis, we have formulated a set of specific hypotheses
and identified different tasks that we see as indicative of
our goals and included in our evaluation. In their seminal
work on scatterplots, Sarikaya and Gleicher describe browsing
tasks, which are relevant when users desire an overview of
an unknown dataset [6]. In contrast to tasks that focus on
individual objects, the nature of browsing tasks is to search
for patterns within the data (e.g., clusters and correlations),
as well as patterns like properties of objects in a specific
neighborhood. We believe that two-dimensional embeddings
are often a starting point for such a scenario, so we deem
these browsing tasks a good selection for our evaluation.
Thus, to investigate the glyph designs’ impact on the
communication of additional dimensions beyond the two
embedding dimensions, we have tasked users to identify
outliers and subclusters and investigate the correlations
between dimensions. So, we are not looking at individual
glyphs in the plane; instead, our goal is to find patterns in the
additional dimensions - out of the plane. As these are the tasks
chosen to help answer our guiding research question, we
refer to them as out of the plane tasks. To further investigate
if the glyph designs used to affect the communication of
the two primary dimensions are something to be avoided,
we have also tasked users with identifying clusters in the
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plane. During this task, we compare flower and star glyphs
with dot symbols, as they are used in standard scatterplots.
Finally, we have investigated the expressivity of flower and
star glyphs wrt. to the number of additional dimensions.

While, as illustrated in Figure 2, both glyphs can be
used to communicate different numbers of dimensions, there
is naturally an upper limit to this, as readability will be
affected. For the flower glyph, this upper limit is defined
by the point where adding more petals to the glyph would
lead to overlap between the glyphs. Perceptually, this limit
could be reached earlier, specifically when observers can no
longer reliably read individual values from an individual
petal. To investigate these limits for our glyphs in real-world
scenarios, we tasked users with estimating averages over
selected regions in the two-dimensional embedding. As this
task requires aggregation over several glyphs, we consider it
was challenging enough to estimate a relevant upper limit.

We selected data from the U.S. Government’s open data
initiative for our studies to derive insights relevant to real-
world scenarios. Therefore, we have scraped all data made
available from data.gov and selected data sets with at least 13
decimal attributes and at least 100 data points for our studies,
leaving us with 608 real-world data sets from different
domains. As stimuli, we generated flower and star glyph
visualizations based on the embedding of these data. To
collect many responses to these stimuli, wrt. the selected
tasks, we conducted crowd-sourced user studies through
Amazon’s Mechanical Turk platform, where we tasked a
total of 912 participants.

Our results demonstrate that additional dimensions can
be effectively encoded through the aforementioned glyphs
without sacrificing positional encoding. We found that
flower glyphs outperform star glyphs in tasks where high-
dimensional data play a role, for example, in detecting high-
dimensional outliers. While quantifying individual values is
possible from the glyphs, this is associated with considerable
uncertainty.
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Fig. 1. Flower glyphs (top row) and star glyphs (bottom row) encoding
different attribute values. Attribute A is chosen to be 10% for the first two
columns and 100% for the remaining two, B always shows 100%, and
C 10% for the first column, 50% for the two columns in the center, and
finally 100% for the column on the right.

2 RELATED WORK

Visualizing high-dimensional data is a common task when
trying to find insights into unknown datasets. There are

two main approaches: multi-dimensional visualization and
dimensionality reduction techniques. The key difference is
that the latter reduces the original data dimensions to a two-
or three-dimensional set and uses common techniques, such
as scatterplots, to visualize them.
Multidimensional Visualization Techniques. These tech-
niques use many approaches that may spatially separate the
dimensions, such as in small multiples or parallel coordinate
plots, or try to present them in the same space, such as
in glyph visualizations. Although related work found that
such spatial separation can have advantages compared to
clustering approaches [7], separating dimensions in space
usually requires much room. Moreover, one of the main
problems with such approaches is the difficulty in detecting
patterns, such as outliers or clusters.

Therefore, a line of research in this area is finding appro-
priate techniques for reordering (e.g., [8], [9], [10], [11], [12])
such that the visual analysis is facilitated. Quality metrics
can be calculated based on data alone or images generated.
Some visual factors have been shown to have an essential
influence on the perception of the data. Sedlmair et al., for
example, analyzed and created a taxonomy of a large set of
such factors in the context of cluster separation [13]. Crowd-
sourcing services, such as Mechanical Turk, have previously
been shown to facilitate the successful outsourcing of tasks to
large populations of users [14], and problems such as cluster
detection can be addressed using this paradigm [15].
Two-Dimensional Embeddings. Two-dimensional embed-
dings can be used for various tasks, such as detecting clusters,
correlations, or outliers in the data. Work by Sarikaya and
Gleicher evaluated these tasks and categorized them into
three different groups, namely object-centric, browsing, and
aggregate-level [6]. Thus, the category browsing focuses on rel-
evant tasks when exploring unknown datasets. Furthermore,
perception-based studies of dimensionality reduction tech-
niques have been carried out. For two-dimensional embed-
dings in the form of scatterplots, research has been devoted to
determining whether projections provide separable clusters
and improving them [16], [17]. Other researchers analyzed
the quality of dimensionality reduction techniques [18].

Early work on perception suggests a ranking of visual
channels based on the type of data [19]. For example, they
found that, for quantitative data, visual attributes such as size
and length can be measured and compared more accurately
than color, saturation, and brightness. Then these findings
were applied in the context of two-dimensional embeddings
for optimized presentation [9], [20], [21], [22], [23], [24].
However, other works on data-driven quality measures do
not consider human perception [25].
Glyph-Based Visualizations. Data projections come with
the downside that data features can be lost. One way to
preserve features within the data is to encode them in
extra dimensions, e.g., by using glyphs instead of a simple
dot-based encoding [5]. Glyph-based visualizations are a
common visualization technique in which an individual
visual object represents each data point. The dimensions of
these data points are usually encoded in the visual attributes
of these objects using properties such as size, shape, color,
and orientation [3], [26], [27].

To the best of the authors’ knowledge, little research has
been carried out to explore to what extent the use of glyphs
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Fig. 2. Flower glyphs (top row) and star glyphs (bottom row) in both colors used (orange and blue). The glyphs encode different numbers of
additional dimensions (three, five, seven, nine, eleven, and thirteen), as used in our study. In this example, dimensions are labeled A-M, whereby
the respective attribute values are the same for all glyphs: A : 50%, B : 100%, C : 30%, D : 70%, E : 100%, F : 10%, G : 80%, H : 20%, I :
60%, J : 90%, K : 40%, L : 70%, M : 100%.

in two-dimensional embeddings or scatterplot layouts is
effective for visual communication [28]. More specifically,
tasks like outlier detection and cluster counting have been
explored using common spatial dimensions, but not when
extra dimensions are encoded into the glyphs. Most studies in
glyph perception relate to the ability to compare glyphs using
similarity tasks, as in Lee et al. [29]. Fuchs et al. evaluated
the perception of different glyphs [3]. They distinguished
between position-based encodings (such as line graphs and
bar charts) and angle-based encodings (such as star glyphs).
They found that a radial layout is more effective for reading
values at a specific location. Furthermore, there has been
some work on designing star glyphs effectively [23], [30].
The works of Klippel et al. compared different orders of
assignment of variables to glyph rays [30], [31]. Although
they found some effects, the differences were less prominent
than expected. There is also work by Miller et al., suggesting
optimal ordering strategies depending on the task used [32].
While these papers are related to our investigations, we could
not apply their findings to our work for multiple reasons.
Their suggestion of creating glyphs with a distinctive spike
seems easy to adopt. However, because our stimuli contain a
larger number of glyphs, this is difficult since maximizing
for a single spike within a specific array of variables might
reduce the effect on other variables. Furthermore, when using
tasks that focus on a subset of glyphs, an optimal ordering
might differ depending on the subset. One last thing about
reordering that we would like to mention is that an optimal
order might be different depending on the task. Also, when
used in a dashboard context, as shown by Kammer et al.,
there are usually external requirements for axis ordering and
filtering [5]. As pointed out, a filtered subset might require a
different ordering.

Other findings are targeted at other visual parameters,
such as color, which we reserved for other aspects of the
visualization. As a star glyph design guideline suggested,
we added lines to our star glyphs supporting similarity
judgmglyphs [23].

Keck et al. compares star glyphs and flower glyphs in
tasks such as identifying extrema in regularly spaced arrange-
ments [4]. However, they do not analyze other problems,
such as cluster detection in two-dimensional embeddings.
While star glyphs showed better performance in terms of
solution time, participants preferred flower glyphs because
of their novelty. Furthermore, Cao et al. proposed z-glyphs,

a modified version of glyphs such as star graphs, optimized
for outlier detection within a single chart [33].

Our work applies to high-dimensional data, visualized
through a two-dimensional glyph-based embedding. There
are two ways to use our approach. Firstly, by directly map-
ping multi-dimensional data to visual properties. If the data
contains too many dimensions to apply to visual properties
directly, dimensionality reduction could be applied before
encoding the projected data into visual properties [2], [34].
So instead of reducing the data to two or three dimensions,
we would reduce it to a higher number. In our work, we
focus on the second approach.

3 GENERAL METHODS

To investigate our guiding hypothesis, users had to complete
the selected tasks using flower and star glyph visualizations.
The following sections describe the general setup of these
experiments, wrt. glyph encoding, stimuli generation, exper-
imental design, and procedure.

3.1 Task Selection
Following our guiding hypothesis that flower and star glyphs
support the communication of additional dimensions in two-
dimensional embeddings, we had to decide on a set of tasks
for our experiments. We identified the work by Sarikaya
and Gleicher as offering a good categorization of tasks on
scatterplots. This work describes three categories of tasks,
namely object-centric, browsing, and aggregate-level [6]. As the
name suggests, object-centric tasks are related to individual
objects e.g., finding particular objects or reconciling object
attributes with their spatial location. In contrast, aggregate-
level tasks are related to tasks such as identifying the level
of correlation, comparing numerosity, or understanding the
relative distance between objects. So tasks related to a larger
number of elements with a clear question in mind.

On the other hand, the browsing category describes tasks
related to a set of elements but without a clear question in
mind. Examples of such exploratory tasks could be to find
patterns within the data, such as clusters and correlations,
but also looking for unusual things (e.g., outliers). As this
matches our research question of exploring high-dimensional
data, we decided to use a set of tasks from this category.

We designed our studies to consist of three experiments.
In the first experiment, we tried to find how many variables
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can be encoded into a single glyph. Subsequently, we ran an
experiment to find if our glyph encodings affect positional
cluster identification compared to a dot encoding. So, this
second experiment, in particular, could be considered a in
plane task since it focuses on the position within the plane.
Finally, we carried out a third experiment using three tasks
from the browsing category: outlier detection, correlation
detection, and subcluster identification. Since these tasks
could not be solved using the position within the plot, but
by using the dimension encoded in the glyph, we consider
these tasks to go out of the plane.

3.2 Glyph Encoding

We parameterized the two glyph types to generate visual
stimuli for our experiments. As illustrated in Figure 1, in both
flower and star glyphs, the extent of each axis represents the
value of the encoded attribute. The full extent represents the
maximum value, and the zero extents represent the minimum
value for each attribute of the data point encoded by the
glyph.

For star glyphs, each data dimension was encoded into
a star-like shape around a center point. As said, the ray’s
extent represented this dimension’s encoded value. Then
each ray was connected to both adjacent rays, which means
that the rays were not drawn independently (see Figure 1,
bottom row). For the flower glyph, each pedal was drawn
independently. As the encoded value grows, the pedal grows
in two aspects: the length, just as for the star glyph, and the
radius at the tip, resulting in a flower-like appearance.

The work of Fuchs et al. suggests that drawing the
axis does support the ability to estimate values from star
glyphs [23]. Therefore, we not only show the glyph itself but
also depict an axis for each dimension. For the star glyph,
observers could see the center of the glyph and the extent
of the glyph. We support relative judgment by allowing
observers to see the extent (maximum possible value). For
the flower glyph, we did not need support to understand
the center of the glyph because of the way this glyph was
drawn. Therefore, we drew the flower on top of the axis, still
allowing estimation relative to the maximum. Furthermore,
this axis allowed drawing glyphs that encode small values
for all dimensions. Without these axes, we would not draw
anything in the extreme case with the minimum value for
each dimension.

The number of dimensions of the data to visualize ranged
from three to 13, as illustrated in Figure 2. Thus, each
glyph encoded up to 13 dimensions beyond the two spatial
dimensions. As star glyphs had to encode at least three
dimensions, we also used this minimum for flower glyphs.
We noticed that 13 dimensions mark an upper limit for the
flower glyph before the petals start to touch each other, so
we used this upper limit for both glyphs.

Klippel et al. suggested that the rays of star glyphs
should be drawn using different colors to make them visually
salient [30]. We still decided not to use color for the rays of
our glyphs for two reasons. First, we needed to encode 13
dimensions per glyph, meaning we would need to find a
set of 13 well distinguishable colors. However, finding 13
colors that ideally also work for people with color vision
impairments is very complicated. We could still use an

arrangement with only well-distinguishable colors next to
each other. However, since our experiments did include
tasks that require a target-distractor distinction, we decided
to reserve color for this aspect.

3.3 Stimuli Generation
For our studies, we collected real-world datasets provided by
the U.S. Government’s open data initiative, data.gov. Through
their data API, we selected and downloaded 20k data sets,
which were available as CSV files for easy processing. From
these data sets, we excluded those that used compression
or were corrupt. The remaining data sets were analyzed per
column using the Python Pandas analytics library to select
those with at least 13 decimal attributes and 100 data points.
Thus, we obtained a total of 608 data sets, which we kept
together with their associated metadata.

We then computed the variance for each dimension
depending on how many additional dimensions we wanted
to visualize (three, five, seven, nine, eleven, or thirteen). We
sorted the dimensions from the highest to the lowest variance
and finally picked the desired number of dimensions, starting
from the highest variance. We included 100 data points for
each stimulus based on initial lab experiments. Therefore, we
subsampled each dataset to construct our stimuli. By doing
so, we ended up with a set of datasets containing 100 data
points and between three and thirteen dimensions.

We then projected these attributes down to two dimen-
sions using UMAP [1] to obtain positions. As we considered
it the state-of-the-art approach, we chose UMAP over other
dimensionality reduction techniques, such as tSNE [35]. For
simplified further processing, we normalize the obtained
positions and each of the additional data dimensions to lie
in [0.0, 1.0]. These two positional dimensions were added
to each dataset so that each dataset contained between five
and 17 dimensions, two used for position, and the remaining
encoded in the glyph.

As some tasks required us to differentiate between target
and distractor points, we used hues from the ColorBrewer
qualitative color palette [36] to encode this classification. To
provide visual separability and prevent bias toward red, we
chose orange for target and blue for distractor glyphs [24],
[37], [38]. We only used orange for tasks without the need
for distinction between target and distractor. Examples of
stimuli can be seen in Figure 3.

We used Data-Driven Documents (D3) [39] to show
our stimuli in a web browser. We placed the glyphs on
a white canvas with 800× 800 pixels with a diameter of 40
pixels. The glyphs themselves have been drawn as described
in Subsection 3.2.

3.4 Hypotheses
As the title suggests, our general research question for this
work could be formulated as follows: Do flower and star
glyphs support the communication of additional dimensions in
two-dimensional embeddings? To approach these questions,
we formulate the following hypotheses, which are then
evaluated using our selected tasks:
H1: Position Preservation. Using glyphs rather than dot
encodings does not hinder the ability to decode 2D positions.
Research found that sizes of elements within a scatterplot
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Fig. 3. Three example stimuli as used in our experiments. In our stimuli, color encodes whether a point is a target or distractor point, where orange is
used for target points, and blue is used for distractors. On the left, we present an example from the subcluster task used in Experiment 3, encoding
seven additional dimensions per glyph. The correct answer for this example would be that there are subclusters within the glyphs beyond the
two-dimensional dimension. In the middle, we present an example from the cluster counting task used in Experiment 2, encoding three dimensions
per glyph, forming three positional clusters. On the right, we present an example from the correlation task used in Experiment 3 with five dimensions
per glyph. The correct answer in this example would be a correlation between dimensions D and E. As defined in Subsection 6.5, the combination of
the remaining dimensions does not show a correlation.

have a stronger effect than shapes [40]. We, therefore, suspect
that radial glyphs like the flower and star glyph do not
hinder the ability to decode 2D position compared to dot
encodings.

H2: Quantification. We suspect that observers can quantify
individual values encoded in the glyphs.
Fuchs et al. found that radial layouts can be effective for
reading values [3]. Also, while the Glyphboard application
did not use a task related to reading values, using the
application, we noticed that the glyphs allowed for it [5].

H3: Single Dimension Patterns. Due to the pattern-
forming nature of these glyphs, we suspect that our glyph
embeddings support the identification of high-dimensional
data patterns, which are not encoded in the two embedding
dimensions.
We took inspiration from the idea of the stick figure
glyph [41]. Here, multi-dimensional data are encoded into
connected lines, encoding values into the angle at which
the lines are drawn, forming strong visual patterns. While,
in contrast to the idea of the stick figure glyph, we are not
uniformly distributing within the 2D domain, we still argue
that our glyphs enable the identification of patterns. For
example, if the value for a particular dimension is high,
all glyphs seem to point in the direction encoding this
dimension. Outliers that do not follow this are also perceived
as strong outliers, breaking that pattern.

H4: Multi Dimension Patterns. Following H1 , we suspect
that glyph encodings enable the comparison of multiple
values of glyphs and therefore support tasks like detecting
correlations.
Our final hypothesis is somehow connected to H3 , but
goes beyond that. We suspect that it is possible to identify
patterns within one extra dimension and patterns within

multiple dimensions. Using parallel coordinates plots allows
for identifying patterns like correlations between adjacent
axes. While glyphs do not scale the same for the number
of data points as parallel coordinates, we still suspect that
glyphs allow for finding patterns like correlations between
multiple dimensions.

3.5 Experimental Design and Procedure

Since our experiments involved many stimuli, we decided to
divide the entire set of stimuli to ensure the participants’
motivation. In previous crowd-sourced experiments, we
found that participants tended to jump off studies if they
exceeded around 20 minutes. Besides that, we think it is
difficult to stay focused for longer, especially when com-
pleting repetitive tasks, as used in our experiments. Each
task was therefore conducted as a within-subject design
wrt. the glyphs and a between-subject design for the number
of additional dimensions. So, each participant was confronted
with both glyphs, each representing one of our additional
number of dimensions conditions. We presented the stimuli
in a randomized order to prevent learning and fatigue effects.
For all experiments, we measured accuracy and response
time.

Each experiment followed the same general procedure.
We first presented a welcome screen showing an example
visualization before introducing the glyphs using examples
similar to those presented in Figure 2. Then, we showed
an example stimulus, as shown in Figure 3. This stimulus
was shown together with the glyph legend (top) and a
response area (bottom), reassembling the user interface. We
also displayed stimuli to introduce the concept of a target
area if necessary. Subsequently, we presented the actual task
using multiple examples drawn from different stimuli than
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those used in the study. The participants received instructions
on responding to the stimuli before proceeding with the
training phase. During this training phase, the participants
got comfortable with the procedure and received feedback
on their responses, which further helped them understand
the task. In this training phase, we also provided feedback
on participants’ responses. If they did not respond correctly,
we informed them about this, and the participants would
select another answer until they did. For tasks involving
a target area, we informed them if they did select a glyph
outside the target area, saying they needed to select a glyph
from within the target area. For other incorrect answers,
we replied that they did not respond correctly and should
try again. When they responded correctly, the participants
were informed of the correct response and could see their
response to understand why this answer was correct. After
this training phase, we informed the participants that the
study was about to start. The participants then completed all
the stimuli in the study. Then, they completed a demographic
questionnaire to complete the study. Supplemental material
contains screenshots of each of the tasks and their introduc-
tion. With this design, we could keep each participant’s time
at 15 minutes. The effort of the participants was rewarded
with a target rate of € 5 per hour.

3.6 Evaluation

We used different statistical tests for our analysis. We used the
t-test and Wilcoxon signed-rank test for pairwise comparison,
depending on the Levene and Shapiro-Wilk pretest. For
the evaluation of our between-subject condition (number
of dimensions per glyph), we used the Kruskal-Wallis test.
Post hoc pairwise comparison was then performed using
the Mann-Whitney rank test with Bonferroni correction
applied. Because of the within-subject design, a comparison
between the glyphs was made using Friedman’s ANOVA
and Nemenyi post hoc for pairwise comparison.

To ensure data quality (e.g., detect click-through), we had
to exclude participants from our experiments. Depending
on the experimental design, we used different exclusion
criteria. Generally, however, participants needed to meet the
criteria to outperform the chance level, e.g., for force choice
experiments and did not show unusual fast response times.

4 EXPERIMENT 1: NUMBER OF DIMENSIONS

One essential part of our guiding hypothesis was deter-
mining if flower and star glyphs could effectively en-
code additional dimensions beyond the two-dimensional
plane. Furthermore, if so, up to what number of dimensions?
To investigate this, we conducted the following experiment
in which we varied the number of additional dimensions to
be encoded.
Task Selection. For this experiment, we needed to balance
task difficulty so that we would not end up with a trivial
maximum number of dimensions. Among the browsing
tasks described by Sarikaya and Gleicher, some tasks allow
observers to explore the properties of data points in a given
neighborhood to form aggregates [6]. As these tasks are
not focused on a single data point or require assessing
the entirety of data points, they allow for an adequate

balance of task difficulty. Therefore, we tasked participants
to estimate the average value of one attribute from all glyphs
within a given region to determine how many dimensions
can be communicated effectively. So participants needed to
see which attribute was asked for in the example and then
look at all glyphs within a region to estimate the average
(mean) value for the given attribute. Figure 3 (right) shows
an example stimulus from this experiment, where orange
glyphs indicate the target area for the average estimate.
Stimuli Generation. To generate a target region needed for
this task, we picked a random point from our data points.
To avoid too sparse regions, we ensured that this point is
adjacent to ten to twenty data points within a .2 radius of
our normalized positions. If our sparseness criterion was not
met, we discarded and picked a new point until it was met.
The thus obtained data point, together with its neighbors in
the .2 radius, was then used as a target area based on which
the participants had to estimate the average value.
Experimental Design. We used 30 data sets for each dimen-
sion (three, five, seven, nine, eleven, and thirteen), and each
data set was presented using flower and star glyphs. We
confined ourselves to a maximum of thirteen dimensions, as
we found that for flower glyphs, readability beyond that is
hampered by petal overlap. By using both glyphs (2), the
number of additional dimensions (6), and 30 datasets per
number of dimensions, we generated a total of 360 stimuli for
this task. As described in Subsection 3.5, we used a within-
subject design wrt. glyph designs and a between-subject
design for the number of additional dimensions.
Procedure. We followed the general procedure described
in Subsection 3.5. We also indicated the additional dimension
to estimate the average below the visualization area. We
showed a slider ranging from 0 to 100 to obtain the average
value of the replies. Once the participants were confident
in their input, they confirmed their selection by pressing a
button to continue to the next stimulus.
Evaluation. We recruited a total of 317 participants for
this experiment. 52, 57, 55, 53, 49, 51 for three, five, seven,
nine, eleven, and thirteen additional dimensions per glyph,
respectively. We randomly excluded 23 people from a subset
of groups to produce equally sized groups. Therefore, we
present the results of 49 participants per condition for a total
of 294 participants (102 female, 191 male, 1 did not report,
Mage = 33.89, SD = 9.42).

We calculated accuracy using the absolute offset between
the participants’ responses and the actual value. Thus, all
offset values presented in the following evaluation are offset
in units from the original values of the glyphs (0 – 100).

When analyzing different numbers of additional dimen-
sions encoded into the glyphs, we found significant effects
on accuracy. As expected, we found a significant decrease
in accuracy with an increasing number of dimensions (
three (Mdn = 17.31, IQR = 22.47), five (Mdn = 16.66,
IQR = 21.91), seven (Mdn = 18.59, IQR = 24.23), nine
(Mdn = 21.94, IQR = 28.79), eleven (Mdn = 21.39,
IQR = 28.74), thirteen (Mdn = 22.53, IQR = 30.57,
H(6) = 240.38, p < .001) ). During the post hoc analysis,
we found two groups. Three, five, and seven additional
dimensions form the first group. Each condition in this
group significantly affected the remaining conditions (nine,
eleven, and thirteen; p < .001) that formed the second
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Fig. 4. Boxplot shows accuracy values for estimating the average value by
condition and the number of additional dimensions. Accuracy is measured
by calculating the absolute offset between the actual value of the target
dimension and the estimate of the participants; therefore, lower values
are better. As we can see, the accuracy decreases with an increasing
number of dimensions. This finding is also consistent for both flower and
star glyphs.

group. Within the first group, we found a significant effect
between the conditions ( three ↔ five (p < .05), three ↔
seven (p < .05), five ↔ seven (p < .001) ). We did not find
significant differences within the group with higher numbers
of dimensions (nine, eleven, thirteen).

Figure 4 shows a boxplot of the accuracy per condition
and the number of additional dimensions for this experiment.
When comparing our glyphs directly, we could not find a
significant effect. Not when comparing flowers vs. stars over
all additional dimensions nor when comparing conditions
directly (e.g., flowers using three additional dimensions vs.
stars using three additional dimensions).
Results. We conclude that estimating the average value using
glyphs is possible based on the results obtained, supporting
our hypothesis H2 . However, it comes with relatively large
uncertainty, which grows with the number of encoded dimen-
sions. Using seven dimensions per glyph seems to mark some
threshold here since we found interesting significant effects
between the lower dimensional group (three, five, and seven)
and the rest (nine, eleven, and thirteen). We did not find a
significant decrease in accuracy beyond seven dimensions
per glyph. Since our experiments already included numerous
variables, we decided to limit the remaining experiments to
the first three conditions (three, five, and seven dimensions
per glyph), keeping our experiments at a reasonable scale.

5 EXPERIMENT 2: POSITIONAL ENCODING

Although Experiment 1 indicated that flower and star glyphs
could communicate additional dimensions beyond position,
we also wanted to evaluate the impact of these glyphs
wrt. communicating these spatial dimensions. To investigate
whether using these glyphs affects communicating the
positional encoding, we compared the two glyphs against a
baseline given by dots as used in standard scatterplots.
Task Selection. As with scatterplots, identifying clusters is
essential when studying two-dimensional embeddings. Thus,
we consider the results of a cluster counting task as a good
indicator to compare the performance of glyphs and dots for

in-the-plane tasks. Therefore, users had to specify the number of
positional clusters in this experiment. Figure 3 (middle) shows
an example of a stimulus as used in this experiment.
Stimuli Generation. To generate stimuli for this task, we
use the approach described in Subsection 3.3. We used all
data sets that contained at least 100 data points and at least
13 dimensions. We then subsample 100 data points from
each data set so that each contains the same number of data
points. These points are then projected to two dimensions
using UMAP for the position.

Afterward, we used DBSCAN on these two positional
dimensions (generated by UMAP) to compute class labels
for each data point. If a data point was labeled as an outlier,
we did run this process from the start again because we
would rather not include outliers but also maintain a constant
number of 100 data points for each stimulus. Finally, we used
the class labels to compute the number of positional labels
of the given dataset. DBSCAN hyperparameters for this
experiment have been chosen based on internal piloting.
Since this experiment aimed to determine whether our
glyph encodings do impact cluster perception compared to
standard scatterplot encodings, we argue that this approach
is a suitable solution for this experiment.
Experimental Design. To evaluate participants’ ability to
detect positional clusters within the visualization, we decided
to evaluate a range of one to five positional clusters. We
decided to use four stimuli per number of positional clusters
for a total of 20 datasets per condition. We used three, five,
and seven additional dimensions encoded per glyph, in
line with our findings from Experiment 1. These stimuli
were presented using flowers, stars, and simple dots as
a baseline. Thus, we used both glyphs, and dots (3), our
number of different additional dimensions per glyph (3),
different numbers of clusters (5), and repetitions of each of
these conditions (4) to generate a total of 180 stimuli for this
task.
Procedure. To input how many clusters of points the par-
ticipants could detect, they had to respond using a drop-
down menu below the visualization area. Once participants
were comfortable with their choice, they could confirm and
continue with the next stimulus by pressing a button.
Evaluation. We recruited 166 participants for this experiment,
54 for three additional dimensions, 53 for five additional
dimensions, and 59 for the seven additional dimensions
per glyph condition. In this experiment, participants had
to decide between one of five possible responses (one to
five positional clusters). We found a total of 39 participants
who could not achieve a mean accuracy greater than 20%,
meaning these participants were worse than the chance level.
This exclusion criterion resulted in a rather large group of
participants that we needed to exclude. We suspect this to
happen because of the subjective understanding of what
defines a cluster. While one might think of two groups of
points that are close together as two clusters, others see the
points as a single cluster. We found the same disagreement in
our prestudy for Experiment 3, as outlined in Subsection 6.2.

Thus, we had to exclude nine participants from the
three additional dimensions, 14 from the five additional
dimensions, and 16 from the seven additional dimensions
per glyph condition. To achieve equal groups between
these conditions, we randomly excluded ten participants.
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Therefore, we present the results of 39 participants per
condition for a total of 117 participants (33 female, 84 male,
Mage = 36.33, SD = 9.73). Figure 5 shows a boxplot of the
results of the cluster counting task.

Accuracy - Cluster Counting

Number of Additional Dimensions per Glyph

Ac
cu

ra
cy

 (%
) Glyph

Flower

Star
Dot

Fig. 5. Boxplot of accuracies per condition and number of additional
dimensions for the cluster counting task. Accuracies are measured as
the mean accuracy per participant for each condition; therefore, higher
values are better. From this plot, we can see those different glyphs are
on par in terms of accuracy compared to the baseline dot encoding.

Comparing the three visual encodings, we did not find a
significant effect on accuracy between flowers, stars, and dots.
However, we did find effects on response times between
the glyphs ( flowers (Mdn = 4.86s, IQR = 4.45s), stars
(Mdn = 4.8s, IQR = 4.07s), dots (Mdn = 4.23s, IQR =
3.36s, χ2(2) = 129.28, p < .001) ). During post hoc analysis,
we found that dots allow for significantly faster responses
compared to other encodings ( flowers ↔ stars (p = .08),
flowers ↔ dots (p < .001), stars ↔ dots (p < .001) ).

When investigating different number of dimensions
encoded into the glyphs, we found significant effects between
three (Mdn = 35.0%, IQR = 25.0%), five (Mdn = 45.0%,
IQR = 25.0%), and seven (Mdn = 30.0%, IQR = 15.0%,
χ2(2) = 31.93, p < .001). Here, five additional dimensions
are seemingly more accurate than the others ( three ↔ five
(p < .001), five ↔ nine (p < .001), three ↔ nine (p = .052) ).

We also compared the glyphs under the individual
dimension conditions. For conditions using three and five
additional dimensions, we could not find a significant effect
(three (p = .33), five (p = .14)). However, for seven dimen-
sions per glyph, we did find a significant effect ( flowers
(Mdn = 35.0%, IQR = 12.5%), stars (Mdn = 30.0%,
IQR = 22.5%), dots (Mdn = 25.0%, IQR = 17.5%,
χ2(2) = 11.75, p < .01) ). During post hoc analysis, we
found a significant effect between the flower and the dot
condition (p < .01) in favor of the flower glyph.

We also analyzed the response times between the glyphs
for the individual number of dimension conditions, revealing
the same effect as in the overall analysis. So for three, five,
and seven additional dimensions we found a significant
effect between the glyphs (three: χ2(2) = 47.43, five:
χ2(2) = 41.85, seven: χ2(2) = 44.49, p < .001, each) and
post hoc analysis revealed that dots allow for significantly
faster responses, compared to the others (p < .001, each),
while there was no effect between flowers and stars.
Results. From this task, we conclude that using glyphs in
two-dimensional embeddings does not hinder perception

compared to baseline dot encodings, supporting hypothesis
H1 . Response times have shown to be significantly faster

when using dots compared to the glyph-based encodings,
and flower glyphs could even outperform dot encodings
in the seven additional dimensions condition. We suspect
the faster response times happen due to the reduced visual
clutter of dots compared to the glyphs. The higher accuracy
of flowers when using more dimensions (and therefore
more petals) could be due to the stronger visual appearance.
Further investigation of this effect might be an interesting
future research direction.

6 EXPERIMENT 3: OUT OF THE PLANE TASKS

In our main experiment, we wanted to investigate to what
extent flower and star glyphs can facilitate the analysis
of additional dimensions in two-dimensional embeddings.
Therefore, we chose three representatives from the plane
tasks, whereby decisions had to be made based on the data
dimensions beyond the two embedding dimensions.

6.1 Task Selection
The three tasks included in this experiment are also based
on the browsing tasks described by Sarikaya and Gleicher [6].
While we had to confine ourselves to a manageable number
of tasks, we wanted at the same time to cover different
varieties of interpreting glyphs. Thus, we identified the
following three tasks, which span from single glyph readings
to comparing groups of glyphs and detecting correlations
among the additional dimensions.
Outlier Detection. During the outlier task, participants were
asked to find an outlier based on the data encoded in the
glyph. Hence, the data points stand out from the other glyphs,
despite the two-dimensional position. So, one way to solve
this is to find a glyph within the others that does not follow
the general pattern of the other glyphs — going out of the
plane.
Subcluster Detection. While dimensionality reduction tech-
niques provide good separability when clustering data into
larger groups, detecting subclusters within positional clusters
is difficult. Therefore, we included this task to determine
whether a subcluster can be found within a larger positional
cluster. These subclusters are groups of data points that share
some pattern in the additional dimensions encoded into the
glyphs.
Correlation Detection. Here, observers are tasked to find
correlations in the additional data dimensions. Since this is
already a rather complex task, we decided to restrict the task
to a target region, just as for the average value estimation
task.

6.2 Stimuli Generation
All experiment stimuli were created using the same methods
described in Subsection 3.3. Again, we limited the maximum
number of additional dimensions to seven, in line with our
findings from Experiment 1. In the following, we describe
individual differences, particularly the computation of the
target value (correct answer).
Outlier Detection. For the outlier task, we computed the
Local Outlier Factor (LOF) [42] for all our data points, using
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the respective attributes presented in the stimuli (three, five,
or seven). Of all the data points, thus marked as an outlier,
we took the one with the largest negative outlier factor, i.e.,
the strongest outlier determined by LOF. Since almost all
the datasets showed a larger number of outliers and the
visual search process could take some time (which might
frustrate participants), we decided to indicate a target area
around the strongest outlier. To prevent this target outlier
from constantly being in the center of this target region, we
picked a random point within the radius of 0.2 around the
outlier (within the normalized position as lying between
0 and 1). We used this random point as a new center for
the target area. Thus, we could further ensure that there
are between ten and twenty points within the target area. In
cases where these conditions were not met, we selected a new
random point and iterated until a region with the desired
properties was found. If it was impossible to find a new
center despite the fact that all points in this neighborhood
had been tested, we rejected this dataset.
Subcluster Detection. For the stimuli used in the subcluster
detection task, we followed a similar approach as used for
the cluster counting task in Experiment 2. We computed
class labels used for the position using DBSCAN. We only
considered datasets where DBSCAN found a single cluster
and ensured that the cluster lies in the additional dimensions
rather than the spatial dimensions. Subsequently, we applied
DBSCAN to the additional dimensions. Since this task
requires visual inspection of the complete plot and is rather
complex, we decided to use a binary forced-choice in this
experiment: Do the glyphs split into groups, yes, or no?. We only
picked datasets with no clustering or two clusters within the
additional dimensions.
Correlation Detection. For the correlation detection task, we
computed Pearson correlation coefficient for each combination
of variables for glyphs within a marked region.
Stimuli Validation. We used UMAP to generate the positions
of the glyphs, whereby one of the main features of UMAP
is to build clusters. However, since our subcluster detection
task focused on high-dimensional clusters, we had to ensure
that our stimuli did not form strong visual clusters in 2D
screen space. To mitigate this risk, we filtered the stimuli as
follows.

First, we tried to use algorithms to check for positional
clusters. However, choosing a good set of hyperparameters
for these algorithms is challenging. Therefore, we used
DBSCAN for every dataset, with every possible value of
hyperparameters. This approach should allow us to find
datasets without clusters in position, regardless of the choice
of hyperparameters. Unfortunately, we ended up with an
empty set using this approach. With a combination of large
epsilons for the considered environment and a few samples
required to define a set of points as a cluster, DBSCAN was
”seeing” clusters in all our datasets.

Consequently, we conducted a crowd-sourced user study
to facilitate stimuli filtering. For this study, we rendered all
datasets using a simple dot encoding (similar to a scatterplot).
We were aware that the perception of clusters is subjective, so
we suspected disagreement among participants on this task.
To account for this, we did not use a binary forced-choice
question such as Do the points form clusters? but decided to use
a triplet-based ranking approach. We presented our images

in a way that allowed participants to rank three of the images
from clustered to unclustered. By doing so, we suspected
that we would be able to rank our datasets based on how
clustered they are or how evenly distributed the points are.
We could not find a stable ranking using this approach
due to disagreement between the participants. These results,
however, show that there is no strong agreement on whether
points form clusters in image space, as we have already
suspected. As a consequence of this finding, we argued that
our datasets are suitable for our high-dimensional subcluster
detection task. If participants cannot detect clusters in
positions but can complete our subcluster task, the clustering
must be communicated through the glyphs’ shapes rather
than their position.

So to finally decide on a set of datasets for our study
that also met our requirement of having the same number
of stimuli for each condition, two domain experts carefully
evaluated the generated stimuli. Based on their inter-observer
results, we only included data sets where they could not spot
positional clusters.

6.3 Experimental Designs
We used our glyphs (flowers and stars) for all tasks in this
experiment. For the correlation detection task and the outlier
detection task, we used 30 stimuli for each of the additional
numbers of dimensions (three, five, and seven). Due to the
more restrictive rule in generating stimuli for the subcluster
task, as described above, we could only select 25 stimuli
per number of additional dimensions per data point for the
subcluster detection task.

We used our glyphs (2), three levels of additional dimen-
sions (3), and 30 datasets for the outlier and correlation tasks
to generate 180 stimuli. For the subcluster detection task, we
generated 150 stimuli using our glyphs (2), three levels of
additional dimensions (3), and 25 datasets.

6.4 Procedure
As in previous experiments, the tasks in this experiment
followed the same general procedure as described in Subsec-
tion 3.5. In this section, we outline the individual differences
for the respective tasks.
Outlier Detection. When detecting outliers, participants
simply had to click on the outlier within the orange target
region and confirm their choice by clicking on a button below
the visualization.
Subcluster Detection. For subcluster detection, we presented
all glyphs using the same orange color while participants
had to decide whether the presented glyphs were divided
into subclusters depending on their shape. Since the classes
do not necessarily divide spatially, we decided not to use an
interaction method based on selecting points within a region
or the like. Instead, we decided that our task should follow a
forced-choice setup, i.e., participants had to judge whether
the presented glyphs divide into groups or not. Therefore, we
also presented two radio buttons to respond to the stimuli.
Correlation Detection. As described in Subsection 6.2, we
indicated a target area of glyphs from which the participants
had to solve the task. Within these glyphs in the target area,
participants had to decide if two target attributes correlated.
The two asked attributes are shown below the visualization.
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Participants could respond using two radio buttons, one for
correlation, the other for no correlation.

6.5 Evaluation

In the following, we evaluate the results for all tasks.
Outlier Detection. We recruited a total of 151 participants
for this task, 52 for three additional dimensions, 46 for
five additional dimensions, and 52 for seven additional
dimensions per glyph condition. Because participants either
repeatedly chose points outside the target area, indicating
that they did not understand the task, or they had mean
response times below 200ms, indicating click-through, we
had to exclude 19 participants. We randomly excluded
four participants to achieve equally sized groups between
these conditions. Consequently, we present the results of 41
participants per condition for a total of 123 participants (47
female, 75 male, 1 did not report, Mage = 31.76, SD = 9.56).
Figure 6 shows a boxplot for accuracy per glyph and the
number of additional dimensions for this task.
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Fig. 6. Boxplot of accuracies per glyph and number of additional
dimensions for the outlier detection task. Accuracies were measured as
the mean accuracy per participant for each condition, so higher values are
better. Here, we can see that flower glyphs show higher accuracies during
this task across different numbers of dimensions per glyph. Furthermore,
accuracy seems to increase with more dimensions per glyph.

We found that participants could identify outliers reliably,
based on our real-world datasets (Mdn = 76.67%, IQR =
26.67%). When comparing our glyphs using t-test, we found
a significantly higher accuracy when using the flower glyph
(Mdn = 83.33%, IQR = 23.33%) compared to the star
glyph (Mdn = 73.33%, IQR = 23.33%, t(245) = 8.82,
p < .001, r = .48). However, by comparing the glyphs in
terms of response times, we did not find a significant effect
between flower (Mdn = .8s, IQR = .6s) and star glyphs
(Mdn = .8s, IQR = .58s, p = .23, r = .99), indicating that
none of the glyphs appears to be pre-attentive in the tested
setups. We think that accuracy is the most important factor
for this task, and we found that the response times in this
task were generally low.

While analyzing the dimensions encoded in the glyph,
we found an interesting effect of the increasing number of
additional dimensions. Here accuracy even increased with
additional dimensions ( three: Mdn = 66.67%, IQR = 30%,
five: Mdn = 83.33%, IQR = 22.5%, seven: Mdn = 76.67%,
IQR = 25%, H(3) = 20.16, p < .001 ). During post hoc

analysis, we found this to be significant between three
and the remaining conditions (p < .001), while it was not
significant between five and seven (p = .52).

As with accuracy, we found a similar effect on response
times when the number of additional dimensions increases.
Here, five additional dimensions showed the fastest response
times (Mdn = .83s, IQR = .62s), followed by seven
(Mdn = .75s, IQR = .52s), and three (Mdn = .81s,
IQR = .61s). We found this effect to be significant
(H(3) = 53.04, p < .001), and post hoc analysis revealed
that this is the case between all conditions (p < .01 each).
Subcluster Detection. For this task, we recruited a total of
160 participants, 57 for three additional dimensions, 53 for
five additional dimensions, and 50 for the seven additional
dimensions per glyph condition. 17 participants could not
achieve the chance level for this binary choice experiment
and have therefore been excluded from this experiment. To
achieve equal-sized groups between these conditions, we
randomly excluded four participants. Therefore, we present
the results of 46 participants per condition for a total of
138 participants (48 female, 88 male, 2 other, Mage = 34.6,
SD = 12.13). The boxplot in Figure 7 shows the results
obtained.
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Fig. 7. Boxplot of accuracies per condition and number of dimensions
for the subcluster detection task. Accuracies are measured as the mean
accuracy per participant for each condition, so higher values are better.
From this plot, we can see that the star glyphs seem consistent with
accuracy as the number of dimensions increases, while the flower glyph
seems to benefit from more dimensions.

While we did find significantly faster response times for
the star glyph compared to the flower glyph, we did not
find an effect between the two glyphs in terms of accuracy
(flower: Mdn = 76.0%, IQR = 20.0%; stars: Mdn = 76.0%,
IQR = 16.0%, p = .76%).

When analyzing different numbers of dimensions en-
coded into the glyphs, we found a significant effect for
this condition. We found an increasing accuracy for three
(Mdn = 68.0%, IQR = 21.0%), five (Mdn = 76.0%,
IQR = 16.0%) and seven (Mdn = 80.0%, IQR = 13.0%),
with significant effects between these conditions (H(3) =
24.01, p < .001). Post hoc analysis found significant effects
between each of these conditions ( three ↔ five (p < .01),
five ↔ seven (p < .05), three ↔ seven (p < .001) ).

When analyzing response times, we did not find a clear
trend with an increasing number of additional dimensions.
Here, using three dimensions per glyph (Mdn = 3.83s,
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IQR = 3.47s) showed the fastest response times, followed
by seven (Mdn = 3.94s, IQR = 4.56s) and five (Mdn =
4.16s, IQR = 3.92s; H(3) = 42.64, p < .001) additional
dimensions. Using post hoc analysis, we found these effects
to be significant between all conditions (p < .01 each).

When analyzing our glyphs as the number of dimensions
increases, we found a significant effect on accuracy for the
flower glyph (three: Mdn = 64.0%, IQR = 20.0%; five:
Mdn = 78.0%, IQR = 15.0%; seven: Mdn = 84.0%,
IQR = 14.0%; H(3) = 26.29, p < .001). Post hoc, we found
significant effects between all these conditions (p < .05 each).
However, we could not find a significant difference between
the number of dimensions when using the star glyphs.

Finally, we compared our glyphs for each number
of dimensions. Here we found significant effects of the
glyphs for each number of additional dimensions. For
three additional dimensions, star glyphs (Mdn = 72.0%,
IQR = 20.0%) showed higher accuracy compared to the
flower glyph (Mdn = 63.0%, IQR = 20.0%; t(91) = −3.48,
p < .01, r = .34). However, for all remaining dimen-
sions, the flower glyph showed higher accuracies ( five /
flowers (Mdn = 78.0%, IQR = 15.0%) ↔ five / stars
(Mdn = 74.0%, IQR = 15.0%; p = .13) and seven /
flowers (Mdn = 84.0%, IQR = 12.0%) ↔ seven / stars
(Mdn = 78.0%, IQR = 12.0%; t(91) = 2.34, p < .05,
r = .24) ), the effect being significant between flowers and
stars in the condition of seven additional dimensions.
Correlation Detection. For the correlation detection task, we
recruited 118 participants, 39, 42, and 37, for conditions of
three, five, and seven additional dimensions, respectively. In
this experiment, we excluded eight participants who could
not exceed 30% of correct responses for this task. Although
this experiment was designed as a binary choice experiment,
we did not use the 50% chance level due to the way we
analyzed the data. Because this task is already complex,
we decided to only use cases with strong correlation or
cases where there is no correlation. Therefore, we adjusted
this threshold level for this task. Furthermore, we had to
randomly exclude two participants from achieving groups
of equal size between the conditions. Therefore, we present
the results of 36 participants per condition for a total of 108
participants (36 female, 71 male, Mage = 34.16, SD = 7.53).
The boxplot in Figure 8 shows the results obtained.

As described in Subsection 6.2, we computed the degree
of correlation using Pearson correlation coefficient. Here, the
correlation was quantified from −1 (strong negative corre-
lation) to 1 (strong positive correlation), where 0 means no
correlation. Participants were tasked with a 2-alternative
forced choice, either Correlation or No Correlation.

As a first step into the evaluation, we focused on re-
sponses to stimuli with clear correlations (either negative
or positive). We defined the correlation values calculated
by Pearson correlation coefficient greater than .8 or smaller
than −.8 as strong correlations. Here, we already found a
rather low accuracy with high uncertainty (Mdn = 66.67%,
IQR = 50.0%).

When comparing our glyphs, we found a higher accuracy
using the flower glyph (Mdn = 71.43%, IQR = 50.0%),
compared to the star glyph (Mdn = 66.67%, IQR = 50.0%,
however, this effect was not significant (p = .9). Although we
found a decrease in precision during an increasing number
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Fig. 8. Boxplot of accuracies per condition and number of dimensions for
the correlation detection task. Here we distinguished between detecting
true correlations and detecting if there is no correlation. Accuracies
were measured as the mean accuracy per participant for each condition,
so higher values are better. From these boxplots, we can see that
participants can reliably detect correlations. However, participants seem
unable to detect cases without correlation reliably.

of dimensions ( three (Mdn = 80.0%, IQR = 50.0%), five
(Mdn = 73.21%, IQR = 42.86%), seven (Mdn = 66.67%,
IQR = 35.71%; p = .19) ), this effect was also not significant.
However, during the analysis of an increasing number of
dimensions, we found a significant effect on response times
three (Mdn = 2.88s, IQR = 6.33s), five (Mdn = 2.43s,
IQR = 3.32s), and seven (Mdn = 2.4s, IQR = 3.93s;
H(3) = 12.82, p = .01), however, without showing a trend.
Post hoc analysis confirmed this interesting finding that
the condition of three additional dimensions is significantly
slower than the remaining conditions (three ↔ five (p <
.001), three ↔ seven (p < .01), and five ↔ seven (p = .8)).

Furthermore, we analyzed whether our participants could
detect cases without correlation. Therefore, we considered
stimuli with a correlation index between −.2 and .2. Here,
we found the accuracy at the chance level (Mdn = 45.45%,
IQR = 32.79%). Again, we could not find a significant effect
on accuracy or response time when trying to detect that the
glyphs do not show a correlation.

Unlike correlation detection stimuli, we found a sig-
nificant effect on accuracy with an increasing number of
dimensions. Here, the condition of three additional dimen-
sions showed the highest accuracy ( three (Mdn = 50.0%,
IQR = 30.02%), five (Mdn = 40.0%, IQR = 31.18%),
seven (Mdn = 42.86%, IQR = 35.11%; H(3) = 8.2,
p = .05) ), also supported by post hoc analysis ( three ↔ five
(p < .01), three ↔ seven (p < .05), five ↔ seven (p = .47)
). As with strong correlations, we found the same effect
on response times ( three (Mdn = 3.53s, IQR = 5.82s),
five (Mdn = 2.78s, IQR = 3.79s), seven (Mdn = 2.5s,
IQR = 4.37s; H(3) = 51.9, p < .001) ). Post hoc also
confirmed the same effect of larger response times for the
three dimensions per glyph condition ( three ↔ five and
three ↔ seven (p < .001, each), five ↔ seven (p = .33) ).
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We found the effect of higher accuracy for the perception
of correlation versus the perception of cases without corre-
lation to be significant (correlation (median : 66.67%, iqr :
50.0%), without correlation (median : 45.45%, iqr : 32.79%;
df(397) = 2981.0, p < .001, r = .99)).

6.6 Results

From the out of the plane tasks, we summarize the following:
Outlier Detection. We found that flower glyphs support
outlier detection in two-dimensional embeddings in this task.
Even increasing the number of dimensions does not affect
the accuracy or response time in outlier detection, possibly
due to a stronger pattern effect, supporting our hypothesis
H3 .

Subcluster Detection. We argue that glyphs enable subclus-
ter detection in additional dimensions based on our results.
As with the outlier task, we again found that the accuracy
even increased with an increasing number of additional
dimensions for both flower and star glyphs. However, as
the number of dimensions increases, the flower glyph shows
higher accuracy than the star glyph, confirming our finding
from the outlier task and further supporting H3 .
Correlation Detection. Despite their high uncertainty, we
believe that glyphs can be used to discover correlations in
two-dimensional embeddings. We could not find a significant
effect of individual glyphs during this task. Flower glyphs
showed slightly higher accuracy, but increasing the number
of dimensions affected this task’s accuracy. Although this
effect was not significant for correlation detection and thus
rejecting H4 , we still found a trend.

One interesting observation we would like to point out
is that while using a low number of additional dimensions
generally showed the highest accuracy; it also showed the
slowest response times.

7 DISCUSSION & IMPLICATIONS

This section discusses the observations made for different
conditions and wrt. our hypotheses. Based on these observa-
tions, we further formulate our lessons learned.

7.1 Condition Observations

While our investigations did focus on the feasibility of glyphs
for communicating additional attributes in two-dimensional
embeddings and the influence of the increasing number of
dimensions encoded per glyph, we also investigated the
individual strengths of flower and star glyphs per task.
Number of Dimensions. We aim to explore how many addi-
tional dimensions can be communicated using glyphs in a
two-dimensional embedding in Experiment 1. We discovered
that seven dimensions per glyph mark an interesting point
beyond which accuracy decreases.

From Experiment 2, we can conclude that, as expected,
the number of additional dimensions does not affect accuracy
during the 2D cluster counting task since the appearance of
the glyph itself does not influence the position estimation.
This claim is supported by our evaluation, where we could
not find a difference between the glyphs and the baseline
encoding using dots.

During Experiment 3, we found that an increasing
number of dimensions per glyph increased the accuracy
of the outlier and subcluster detection tasks. This result
initially puzzled us, but we believe that the number of
emerging patterns increases with the number of dimensions,
supporting this effect. In any case, more experiments should
be carried out to assess this. On the correlation task, on the
other hand, we see the expected drop in performance as the
number of additional dimensions increases.
Glyph Shape. To approach whether our glyphs can be used
to support high-dimensional exploration, our first question
was to find out if the glyphs break the strong visual cue of
positional encoding. Therefore, Experiment 2 compared our
glyphs to a baseline dot encoding in a position-based task.
From this experiment, we can conclude that the flower and
star glyphs are on par with the baseline, suggesting that we
go out of the plane.

Experiment 3 consisted of three tasks focusing on the
glyph’s additional dimensions. Our results suggest that
glyph encoding does enable one to solve these common
tasks. The flower glyph appears to be discernible visually. It
performed well in both outlier and subcluster detection tasks,
especially as the number of additional dimensions increased.
We suspect this happens since the flower glyph offers strong
visual saliency for individual high values because of how
the petals are drawn. On the contrary, the star glyph takes a
narrow shape in these cases. Figure 1, first column, shows
an example of this effect. Furthermore, the star glyph has
the drawback of overdrawing the region below when all
the encoded dimensions are set to large values, leading to a
larger amount of overdraw throughout the visualization.

7.2 Hypotheses Observations

In the following, we present our findings wrt. our hypothe-
ses.
Position Preservation. We suspected that our glyph designs
do not hinder the ability to decode 2D position compared
to simple dot encodings. For the results of Experiment
2, we found partial support for H1 . While we found
significantly higher accuracy for the flower glyph when
using seven dimensions encoded into the glyph, we could
not find an effect on accuracy for the remaining conditions.
We also found significantly faster response times for the
dot encodings, probably due to less visual clutter using
this simpler encoding. However, since we had to limit the
parameters used in this experiment regarding the size or
opacity of the dots, we think there might be a need for a
larger user study to investigate this further.
Quantification. We would argue that our results support
our hypothesis H2 . However, this comes with a noticeable
uncertainty growing with the number of encoded dimensions
(around 20% for up to seven dimensions). One explanation
for this is that neither of the glyphs scales in area linearly
with the values. Although star glyphs suffer from the issue
of different arrangements of the enclosed dimensions (as
visualized in Figure 1), the petals of the flower glyph do
not grow linearly compared to the encoded value. Using
different radii for the leaves’ ends to offset this effect could
be an interesting research direction for optimizing value
estimates.
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Single Dimension Pattern. Due to the nature of the visual
appearance of our glyphs, we suspected the pattern effect
to be strong, as seen in Figure 3 on the left. The outlier and
subcluster tasks’ results suggest support for our hypothesis
H3 , while this effect is seemingly even stronger for the

flower glyph. We suspect this is the case because of two
visual properties of this glyph. First, as previously stated, the
petals of the flower glyphs are independent of each other,
emphasizing high values. Second, while the lengths of the
petals grow linearly to the encoded value, the area does
not. This behavior emphasizes higher values and builds a
stronger visual pattern than the star glyph.
Multi Dimension Patterns. In Experiment 3, we used a
correlation detection task to see whether glyph encodings
allow for the comparison of multiple glyph values. We found
that participants could not reliably recognize these patterns
for this fairly complex task, rejecting H4 . However, we
discovered a hint that glyphs may support this task in
circumstances when the stimulus features a strong correlation
with a lower number of additional dimensions encoded into
the glyph.

7.3 Lessons Learned

Based on our investigations of glyph-based encodings for
high-dimensional data, we would like to distill some impli-
cations to inform glyph encoding in the investigated two-
dimensional embeddings. Even though our investigations
are limited, they nicely demonstrate that those individual
glyphs are beneficial for specific tasks.

Our findings suggest that glyph encodings do not hinder
the ability to decode the 2D position. We also found that
flower glyphs showed promising results for two of our out
of the plane tasks, namely outlier detection and subcluster
detection. Thus, we derive the following implications from
our experiments.

• Glyph encodings could be a viable choice when trying
to find patterns like outlier and subcluster in two-
dimensional embeddings.

• We suggest using flower glyphs for such embeddings
since they perform on par for decoding 2D position
and value estimating but outperform the star glyph
for the pattern-related tasks.

7.4 Limitations & Future Work

We have already completed a relatively large series of studies
with 912 participants divided into three experiments with
five tasks and a diverse set of real-world datasets. However,
to keep our user studies manageable, we had to restrict our
investigations to various areas, such as glyph types and sizes.

However, we do need to establish some limitations.
Firstly, we limited the number of glyphs or data points per
stimulus. We also limited ourselves to a fixed size for the
glyphs and the canvas, or in other words, a fixed relation
between glyph size and canvas size. With this limitation and
the relatively small number of 100 data points per stimulus,
our goal was to limit the amount of visual clutter within the
plot while still not sacrificing real-world transferability. To
further limit our studies, we decided to limit Experiments

2 & 3 wrt. the number of additional dimensions per glyph,
based on our findings from the first experiment.

Another aspect that we would like to point out is the
factor of overplotting. As we already mentioned, our glyphs
are not prone to overplotting in the same way because the
star glyph overdraws the complete area below the glyph
when encoding large values. Moreover, for Experiment 2,
we tried to investigate if our glyphs still allow for decoding
the 2D position but limited ourselves to a single size for
the dot-based encoding. We are aware that these factors can
potentially strongly influence task performance. However,
since we did decide to use real-world datasets, we could not
control this effect without altering the data. Investigating
the influence of overlap on complex glyphs might be an
interesting direction for further research.

In the future, we would like to investigate whether our
findings can be applied to a broader range of conditions,
such as a larger number of data points or different sizes of
glyphs. We would also like to look at other glyphs, such as,
for instance, the sunburst glyph.

8 CONCLUSIONS

Obtaining insights based on unknown high-dimensional
datasets can be challenging. While dimensionality reduction
techniques are a popular tool for visualizing such data sets,
as they preserve high-dimensional features during the pro-
jection, many relations are lost during such a projection. This
limitation opens up the need for appropriate visual encod-
ings for additional dimensions beyond the two dimensions
of the embedding. Therefore, we investigated the capabilities
of glyph visualizations to visualize high-dimensional data
within two-dimensional embeddings. Although glyphs are
often used to communicate high-dimensional data, their
value in the context of two-dimensional embeddings is
largely unexplored. In a series of user studies involving five
relevant tasks, we have investigated two commonly used
glyphs for encoding individual attributes: flower glyphs and
star glyphs.

Our findings suggest that glyph encodings support high-
dimensional exploration without sacrificing positional en-
coding. We recommend using flower glyphs, rather than star
glyphs, for tasks involving pattern detection, such as outlier
and subcluster detection. Although quantifying values from
the glyphs seems possible, it comes with relatively large
uncertainty. We further found that while an increase in the
number of encoded dimensions affects accuracy, pattern-
related tasks like outlier and subcluster detection can even
benefit from this, possibly due to a strong pattern effect.
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Politècnica de Catalunya.

Timo Ropinski He is a professor at Ulm Univer-
sity, heading the Visual Computing Group. Before
moving to Ulm, he was Professor in Interactive
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