
Symphony: Composing Interactive Interfaces for Machine
Learning

Alex Bäuerle∗† Ángel Alexander Cabrera∗† Fred Hohman
Ulm University Carnegie Mellon University Apple
Ulm, Germany Pittsburgh, PA, USA Seattle, WA, USA

alex.baeuerle@uni-ulm.de cabrera@cmu.edu fredhohman@apple.com

Megan Maher
Apple

David Koski
Apple

Xavier Suau
Apple

Cupertino, CA, USA Cupertino, CA, USA Barcelona, Spain
megan_maher@apple.com dkoski@apple.com xsuaucuadros@apple.com

Titus Barik Dominik Moritz
Apple Apple

Seattle, WA, USA Pittsburgh, PA, USA
tbarik@apple.com domoritz@apple.com

Computational Notebooks

import symphony

Reports and Dashboards

Interactive Components for Machine Learning

Code Environments Web-based UIs

Symphony

Figure 1: Symphony applies techniques from machine learning (ML) documentation, data visualization, and interactive pro-
gramming to create ML interfaces with interactive, task-specifc components. Diverse ML practitioners can explore their data
and analyze their models where they work, both in computational notebooks and in web-based dashboards.

ABSTRACT
Interfaces for machine learning (ML), information and visualiza-
tions about models or data, can help practitioners build robust and
responsible ML systems. Despite their benefts, recent studies of
ML teams and our interviews with practitioners (n=9) showed that
ML interfaces have limited adoption in practice. While existing ML
interfaces are efective for specifc tasks, they are not designed to
be reused, explored, and shared by multiple stakeholders in cross-
functional teams. To enable analysis and communication between

∗Both authors contributed equally to this research.
†Work done at Apple.

diferent ML practitioners, we designed and implemented Sym-
phony, a framework for composing interactive ML interfaces with
task-specifc, data-driven components that can be used across plat-
forms such as computational notebooks and web dashboards. We
developed Symphony through participatory design sessions with 10
teams (n=31), and discuss our fndings from deploying Symphony
to 3 production ML projects at Apple. Symphony helped ML prac-
titioners discover previously unknown issues like data duplicates
and blind spots in models while enabling them to share insights
with other stakeholders.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9157-3/22/04.
https://doi.org/10.1145/3491102.3502102

CCS CONCEPTS
• Human-centered computing → Interactive systems and tools;
Visual analytics; • Computing methodologies → Machine learn-
ing; Artifcial intelligence. This work is licensed under a Creative Commons Attribution International

4.0 License.

KEYWORDS
Machine learning, AI, visualization, documentation, interactive
programming, computational notebooks

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3491102.3502102
mailto:domoritz@apple.com
mailto:tbarik@apple.com

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Bäuerle and Cabrera, et al.

ACM Reference Format:
Alex Bäuerle, Ángel Alexander Cabrera, Fred Hohman, Megan Maher, David
Koski, Xavier Suau, Titus Barik, and Dominik Moritz. 2022. Symphony:
Composing Interactive Interfaces for Machine Learning. In CHI Conference
on Human Factors in Computing Systems (CHI ’22), April 29-May 5, 2022, New
Orleans, LA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3491102.3502102

1 INTRODUCTION
Successfully deploying machine learning systems in production is
a complex, collaborative process that involves a wide range of ML
practitioners, from data scientists and engineers to domain ex-
perts and product managers. A substantial amount of research has
gone into creating ML interfaces for analyzing and sharing insights
about ML systems that practitioners can use to better understand
and improve deployed ML products. We describe machine learn-
ing interfaces as static or interactive artifacts, visualizations, and
information that communicate details about ML data and mod-
els. ML interfaces include documentation methods (e.g., Model
Cards [46], Datasheets [17]), visualization dashboards (e.g., What-if
Tool [62], ActiVis [33], among many others [21]), and interactive
programming widgets (e.g., ipywidgets [32], Streamlit [31]) that
give practitioners insights into what their datasets contain and
how their models behave. Despite the benefts and breadth of ML
interfaces, recent studies have found that they are not as widely
used and shared in practice as expected [38, 68]. This underuse can
lead to missed data errors and model failures, a lack of shared team
understanding of model behavior, and, ultimately, deployed ML
systems that may be biased [8] or unsafe [47].

To understand why ML interfaces are not used more frequently,
we interviewed 9 ML practitioners at Apple about their current
machine learning practice and workfows. We found that while
ML practitioners want to use them, current interfaces have limita-
tions that make them either insufcient or too time consuming to
use. One category of ML interfaces are ML documentation methods,
such as Model Cards [46] and Datasheets [17], which describe the
details and records the provenance of an ML system’s data and
model. Documentation methods often lack the interactive tools and
visualizations necessary for specifc analyses and have to be manu-
ally authored and updated separately from where ML development
happens. Another category of interfaces, visualization dashboards,
consist of multiple coordinated views tailored to specifc domains
and tasks. ML practitioners must learn a new platform and wrangle
their data into the right format in order to use these bespoke sys-
tems, which also require signifcant work to reuse for diferent tasks.
Finally, interactive programming widgets can render web-based ML
visualizations directly in code environments. However, widgets
typically cannot be used outside of the platform in which they were
created and often lack complex visualizations required by modern
ML models and unstructured data—non-tabular data types such as
images, videos, audio, point-clouds, sensor data, etc. Overall, we
found that while current ML interfaces work well for specifc tasks
and platforms, they are not designed to be reused, explored, and
shared by diverse stakeholders in cross-functional ML teams.

Our formative research showed that ML work requires bespoke
visualizations for complex models and data types which work across
the diferent platforms ML practitioners use. To address these needs,

we combined the afordances of existing ML interfaces to design and
implement Symphony, a framework for creating and composing
interactive ML interfaces with task-specifc, data-driven visualiza-
tion components. Symphony supports two popular platforms used
by ML practitioners, code environments such as Jupyter notebooks
and no-code environments such as web-based UIs (Figure 1). Sym-
phony components are JavaScript modules that use custom code or
existing libraries to create task-specifc visualizations of structured
and unstructured data. Each component is also fully interactive:
users can flter, group, or select instances either through a UI tool-
bar or code. These interactions are reactively synchronized across
Symphony components, enabling linked visualizations. Symphony’s
cross-platform availability enables ML practitioners to use the same
components for both exploring and sharing insights about their
ML systems (Figure 2).

We worked with ML teams at Apple to both design Symphony
and apply it to deployed ML projects. To collect the diverse require-
ments and use cases for ML interfaces, we conducted participatory
design sessions with 10 ML teams with a total of 31 ML practitioners.
Informed by these sessions, we implemented a set of 11 components
supporting a range of diferent models and data types. We then
worked with 3 teams from the design sessions to deploy Symphony
in their machine learning workfows and ran a think-aloud study
with them to qualitatively evaluate Symphony.

Teams using Symphony with their real-world data and models
found surprising insights which they had not previously known,
such as duplicate instances, labeling errors, and model blind spots.
Participants also described a variety of use cases for Symphony,
from creating automated dataset reports to analyzing model perfor-
mance in computational notebooks. Moreover, participants that did
not previously share their analyses also showed interest in using
Symphony in their teams to better communicate the state of their
ML system with other stakeholders.

The main contribution of this work is Symphony, a framework for
composing interactive ML interfaces with task-specifc, data-driven
visualization components. To design Symphony, we conducted for-
mative interviews, participatory design sessions, and case studies
on deployed ML workfows with a total of 39 ML practitioners
across 15 teams. Symphony enabled ML practitioners to discover
signifcant issues like dataset duplicates and model blind spots,
and encouraged them to share their insights with other stakehold-
ers. Symphony combines the following principles to improve upon
existing ML interfaces:

• Data-driven ML interfaces derived from and updated with
ML data and models.

• Task-specifc visualizations for unstructured data and
modern machine learning models.

• Interactive exploration tools for exploring diferent di-
mensions of an ML system.

• Reusable components that can be used, composed, and
shared across diferent platforms.

2 BACKGROUND AND RELATED WORK
Symphony bridges three areas of related work: ML documentation
methods, data visualization dashboards, and interactive program-
ming environments. First, the Symphony framework can be used

https://doi.org/10.1145/3491102.3502102
https://doi.org/10.1145/3491102.3502102

Symphony CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Symphony in Notebooks Symphony in Web-based UIsA B

Figure 2: A demonstration of Symphony running in both (A) a computational notebook and (B) a web-based UI with the same
visualization components and code. In a computational notebook, an ML practitioner passes their data and model outputs
directly from Python variables like Pandas Data Frames [45] to Symphony components. The ML practitioner can then export
the components to a self-contained, web-based UI. This example shows Symphony loaded with the CIFAR-10 [40] dataset and
a trained image classifcation model. After reading a textual description of the dataset, a user found and selected duplicate car
instances which were reactively highlighted in the projection component and the confusion matrix. The user then explored
the confusion matrix to determine if the duplicates could be impacting model performance.

to write and share ML documentation. Second, Symphony compo-
nents can show complex visualizations and be composed into visual
analytics dashboards to help ML practitioners make sense of ML
data and models (Section 2.2). Lastly, Symphony components can
be used in and exported from interactive programming environ-
ments, like computational notebooks, which are often used by ML
practitioners (Section 2.3).

2.1 Documenting Data and Models
A variety of documentation methods exist to help ML practitioners
track and communicate details about their data and models. Without
knowing what a dataset contains or what a model has learned,
teams can inadvertently release AI products with issues like safety
concerns and biases [13, 15, 53, 54], as seen in numerous deployed
systems [8, 19, 55, 63].

Since machine learning models are a direct result of the data
they were trained on, it is important to frst understand the data
behind an ML system. Datasheets for Datasets [17] applies the idea
of datasheets in electrical engineering to describe important at-
tributes of a dataset, such as collection methods and intended uses.
Similar work has focused on specifc types of data, for example,
Data Statements [7] are tailored to natural language processing
datasets. These guidelines describe what should be included in
documentation, not how an author can create or share the result-
ing artifact [38]. Additionally, these documents are static LATEX or
text documents that are disjoint from the backing data and models
and have to be manually updated. Since there is heterogeneity in

what information is important for each dataset, Holland et al. [23]
proposed the more general concept of Dataset Nutrition Labels,
modular graphs describing diferent aspects of a dataset. Like Sym-
phony, these labels use modular visualizations, however, they focus
on simple aggregate visualizations without displaying data samples
and do not support platforms where ML practitioners do their work.

A parallel line of research has focused on documenting machine
learning models. Model Cards [46] and FactSheets [4] are similar
concepts to Datasheets that can include important information and
details about machine learning models. These model reports include
information ranging from the model type and hyperparameters to
aggregate metrics and ethical considerations. Similar to Datasheets,
these types of documentation are disjoint from the backing data
and do not include interactive visualizations of model details and
performance metrics.

2.2 Visualization for Machine Learning
There are a growing number of visualization systems that help ML
practitioners make sense of modern ML systems with unstructured
datasets and machine learning models [21]. Visualizations can help
ML practitioners in tasks such as auditing models for bias [9], un-
derstanding the internals of deep learning architectures [22], and
guiding automatic model selection [10]. A full review of this lit-
erature is out of scope for this work, but we provide a sample of
representative systems to highlight the types of visualizations that
could be implemented as Symphony components.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Bäuerle and Cabrera, et al.

Data science work often starts with and leads back to under-
standing the backing data. Modern machine learning models and
tasks use unstructured data like images and audio that cannot be
visualized and explored with tables and histograms. Systems like
Know Your Data [28] and Facets [27] are visualization dashboards
for exploring unstructured data. Other visual analytics systems
process the data further to derive insights like outliers [11], biases
in a dataset [61], or mislabeled data instances [66]. With a deeper
understanding of their data, ML practitioners can more efectively
debug and improve their models.

The models ML practitioners use are often large, complex black-
box models like deep learning systems. Visualization systems like
Summit [22] and Seq2Seq-Vis [57] can help ML practitioners de-
velop a better mental model of how their machine learning sys-
tems work and what they are learning. Another set of systems,
including Model Tracker [3], Squares [50], AnchorViz [12], Con-
fusionFlow [20], What-if Tool [62], and MLCube [34], focus on
performance analysis and provide diferent views of a model’s er-
rors Lastly, there are tools for detecting potential biases [1] or
systematic errors [6, 64] in training data. These various of visual-
izations can be repackaged as Symphony components, for example,
we implement a version of FairVis [9] as a component for auditing
classifers for bias.

Lastly, there are integrated systems that help ML practitioners
both implement and visualize ML models. One of the frst systems
describing such an integrated system is Gestalt [48], a develop-
ment environment with visualizations for training and analyzing
classifcation models. A subsequent system focused on interactive
machine learning is Marcelle [16], which uses composable stages
and visualizations to create interactive ML interfaces. In contrast to
Gestalt and Marcell, Symphony is focused on the analysis stage of
ML systems, and includes important features such as cross-platform
support, reactivity, and a consistent data API which are not available
in Gestalt and Marcelle.

ML data and model visualizations are often deployed as visual
analytics dashboards that are separate from both interactive pro-
gramming environments that ML practitioners work with and ML
documentation shared with other stakeholders. This separation lim-
its who can use visualizations to understand ML data and models.
Symphony aims to bridge these worlds by bringing visualizations
both into notebooks where data work happens and into the docu-
mentation shared with other stakeholders.

2.3 Interactive Programming Environments
ML practitioners often use interactive programming environments
for exploring and modeling data since they can interact with and
iterate on their ML systems [35]. These environments are most com-
monly implemented as computational notebooks like Jupyter [37],
DataBricks [26], and Observable [29]. While computational note-
books have extensions for creating interactive visualizations, such
as the ipywidgets API [32] for Jupyter, they are often underused [5]
and hard to share [18, 35].

Several libraries exist for interactively visualizing data in note-
books. Graphing libraries such as Altair [58] and Plotly [30] allow
users to create interactive charts but only support a fnite set of
graphs and require users to manually defne what visualizations

they want to use. Lux [41] and B2 [65] lower the cost of using visu-
alizations in notebooks by automatically providing relevant charts
for users’ data frames. These approaches help analyze tabular data,
but they lack the specifc visual representations needed for machine
learning development.

A separate challenge is sharing visualizations and other note-
book outputs outside of the notebook context. Voilà [60] tackles
this challenge directly by exporting full Jupyter notebooks to a
hosted website. ML practitioners can use Voilà to share notebooks
that contain Symphony components, but it requires a Python kernel
to be running and Voilà does not provide any visualizations itself.
Two visualization frameworks similar to Symphony, Panel [24] and
Plotly Dash [49], use independent components to create visualiza-
tions that can be used in both Jupyter notebooks and standalone
websites. However, these tools also have limitations for creating
complete ML interfaces: Panel visualizations are tied to the Jupyter
ecosystem and lack interactivity without a Python backend, while
Plotly Dash primarily supports Plotly charts and does not easily ex-
tend to custom visualizations. Symphony provides components that
are fully interactive in both notebooks and web UIs, and support any
JavaScript-based visualization. Additionally, Symphony’s shared
state synchronizes its components, enabling reactive brushing and
linking between views.

More recent interactive programming environments have moved
away from the notebook paradigm. For example, in the Stream-
lit [31] platform, users write Python scripts using a library that
renders interactive components in a separate website. While Stream-
lit supports interactive components like Jupyter notebooks, it is
primarily an environment focused on designing web applications
rather than exploratory data science or ML reporting. Exploratory
analysis is still often done in notebooks, and Streamlit requires
users to learn a new platform. Other platforms are moving away
from programming altogether, such as Glinda [14], a declarative
language that lets ML practitioners describe analysis steps in a
domain-specifc language. Glinda does not defne any specifc visu-
alizations, but it could be complemented by Symphony components.
Since Symphony components are standalone JavaScript modules,
future wrappers could integrate Symphony components into data
science environments like Streamlit and Glinda.

3 FORMATIVE INTERVIEWS
To understand how ML interfaces are used in practice, we con-
ducted 7 semi-structured interviews with 9 participants at Apple.
We recruited participants through internal emails and messaging
boards and selected participants across a range of diferent roles,
including engineers, designers, researchers, and testing roles that
work on teams to build and deploy ML systems. Each interview
was conducted over a video call and lasted about an hour. First,
we asked participants about how they currently create and use dif-
ferent ML interfaces like documentation, visualization dashboards,
and widgets. We then asked them what the main limitations and
pain points are in current tools and what types of improvements
they would fnd helpful. From these need-fnding interviews we
identifed the following themes.

Use cases for ML interfaces. All participants agreed that creating
and sharing ML interfaces can help them build more robust and

Symphony CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

capable ML products. Participants described use cases of ML in-
terfaces in myriad tasks, such as “fagging failures for review,” (P2)
“detecting systematic failures,” (P4) and “fairness and bias education.”
(P1) Participants also mentioned stages across the entire ML process
in which ML interfaces can be useful, from “dataset curation and
sharing” (P5) to analysis “after an ML model has been trained,” (P7)
or “in all stages” (P1). Consequently, since diferent stakeholders
involved in an ML product need specifc views of the data and
models, ML interfaces must be fexible enough to support analysis
across numerous tasks and domains.

Ad-hoc tools and analyses. While all participants detailed clear
use cases for ML interfaces, they also mentioned limitations pre-
venting them from using existing tools or sharing insights. One
participant bluntly stated “right now, we basically have no tools”
(P3) for analyzing ML systems. Instead, participants rely on ad-hoc,
hand-crafted visualizations for their specifc analyses. For example,
one of our participants said their process for looking at instances
is to “manually examine icons in a fle explorer.” (P9) Another par-
ticipant “looks at handcrafted summaries of select data subsets” (P4)
to do model analysis. Larger teams with more resources may have
bespoke tools, such as one participant that “use[s] a team-internal
tool to analyze data” (P6). Overall, a lack of adequate tooling leads to
ML practitioners using one-of, manual tools or ML teams investing
in their own, custom visualization systems.

Limitations of existing ML interfaces. Participants detailed a vari-
ety of technical roadblocks and time-consuming processes prevent-
ing them from using existing ML interfaces. Many tools require
users to wrangle and export their data into a specifc format be-
fore loading it into a custom system or dashboard. However, as
one participant stated, “we do not have a lot of time for creating
such visualizations:” (P1) ML practitioners simply do not have the
bandwidth to do the setup and data wrangling work necessary to
use separate systems. ML practitioners’ main priority is working
on data and models, and “if it takes longer than 5-10 minutes, I am
not going to [use an ML interface] immediately” (P6).

Five participants mentioned explicitly that they do not use ML
interfaces because they are not available in the environments where
they work, and that “people would want to use easier tools.” (P3) For
example, “many data scientists want to explore their data in notebooks”
(P2) without having to open a separate system. Additionally, since
data and models update frequently, one participant wanted to “start
a job with checkboxes and buttons” (P6) and produce a self-updating
web UI that they would not have to manually author.

Lastly, the teams we talked to work with myriad data types, such
as video, 3D point cloud, tabular, image, and audio data, and desired
bespoke visualizations supporting their analysis needs. One par-
ticipant mentioned running and visualizing specifc data analyses,
and “would want to specify algorithms because our problems are very
specialized.” (P8) However, current data science tools often only
provide visualizations for a limited set of data types and models.

Lack of communication between stakeholders. As a consequence
of limited, isolated interfaces, participants described various chal-
lenges for communicating and sharing insights. Since diferent
stakeholders prefer diferent environments, such as code-based
notebooks or standalone dashboards, it can be challenging to share

insights with others. In addition to sharable interfaces, participants
also wanted cross-platform support for themselves, as one partici-
pant put it, “I would like both an environment for experimentation
and always there reliable visualizations.” (P2)

It can also be difcult to transfer visualizations and fndings
between platforms that diferent stakeholders work with. One par-
ticipant lamented that “I am often not invited to the table until things
go wrong,” (P4) and in some teams “designers often times don’t have
access to data and model results.” (P3) In turn, decisions about ML
systems are made without all team members having a shared under-
standing of the current state and limitations of the project. Despite
these current limitations, participants thought that “fostering a
culture of sharing insights would be great.” (P3)

4 DESIGN GOALS
Based on the challenges we identifed in the formative interviews,
we found that a successful framework for ML interfaces must fulfll
the following:
Enable data-driven ML interfaces. ML interfaces are often dis-
connected from an ML system’s backing data and model outputs [17,
46]. ML practitioners should be able to create visualizations that
are up-to-date and refect an ML systems’ current state.
Support task-specifc visualizations. Specialized visualizations
are often needed to make sense of the unstructured data and deep
learning models increasingly used in machine learning [51, 59]. ML
interfaces should support these task-specifc visualization needs.
Provide interactive exploration tools. Static ML interfaces only
show a fxed subset of the possible analyses stakeholders may
need [38]. Interactive visualizations let diferent stakeholders dis-
cover and validate the patterns most relevant to their goals.
Make components reusable. Diferent stakeholders explore ML
systems in diferent environments, such as computational note-
books and web-based UIs. ML interfaces should be available across
environments and reusable for diferent domains and tasks.

5 SYMPHONY: A FRAMEWORK FOR
COMPOSING INTERACTIVE INTERFACES
FOR MACHINE LEARNING

Based on these design goals we built Symphony, a framework for
composing ML interfaces from interactive visualization compo-
nents. ML practitioners can explore their data and models using
Symphony components in a computational notebook and then com-
bine and transform them into web-based UIs. Symphony consists of
three primary features: modular components (Section 5.1), environ-
ment wrappers (Section 5.2), and interaction tools (Section 5.3). In
the following, we describe the specifc design and implementation
choices we made to support these goals.

5.1 Modular Components
The building blocks of Symphony are independent, modular com-
ponents designed for task-specifc visualizations (Figure 3, right).
A Symphony component is a JavaScript module that renders a web-
based visualization. We use the Svelte1 web framework as the base
1https://svelte.dev

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Bäuerle and Cabrera, et al.

Settings

Selection

Filters

Groups

Shared State Components

UI Interaction

Code Interaction

Interaction ToolsData Table & Files

Symphony System WrapperSymphony Input

Figure 3: The technical overview of the Symphony framework. A dataset and fles are passed into the Symphony wrapper for
a particular platform. The wrapper holds the shared state which is reactively updated and modifed either by standardized
interaction tools or components themselves.

of Symphony components, but visualizations can be written using
any JavaScript code or library. JavaScript has a rich ecosystem of
libraries and APIs for creating interactive visualizations, like D3 and
Three.JS, which can be used to create Symphony components. This
fexibility is important for visualizing unstructured ML datasets,
something that is not supported by common charting libraries like
Matplotlib [25] or Altair [58].

Each Symphony component is passed three parameters: a meta-
data table, derived state variables like grouped tables, and references
to raw data instances like images. The metadata table contains a
row for each instance from which a set of state variables, such
as fltered and grouped tables are derived (state variables are de-
scribed in detail in Section 5.3). Components are also passed a URL
from which to fetch raw data samples such as images or audio
fles. Symphony controls these three parameters, synchronizing and
reactively updating them across components.

New components can be created using a cookiecutter template
that generates all the boilerplate code needed to integrate com-
ponents with Symphony. In the cookiecutter code, a component
developer modifes the front-end JavaScript to create their custom
interactive visualization. They can make use of the parameters pro-
vided by Symphony to base their visualization on the data provided
by a ML practitioner. In the following Subsection we show how
these modular, reactive components can then be composed by a
Symphony wrapper to be used across diferent platforms.

5.2 Platform Wrappers
The primary goal of using self-contained components is to com-
pose and share them as fexible interfaces across diferent platforms.
This is done using Symphony’s next main feature, wrappers, which
connect components with a particular backing platform. These
wrappers have two primary functions - frst, passing data from a
platform to Symphony in the correct format, and second, rendering
Symphony components in the platform’s UI. To support both ex-
ploring and sharing ML interfaces, we implemented wrappers for
the two platforms most requested in our formative study, Jupyter
notebooks and web UIs. These platforms are also representative
of the two environments we found to be most used by ML practi-
tioners: programming environments for exploratory analysis and
web-based UI interfaces for sharing insights.

The Python wrapper bundles Symphony components as pack-
ages which can be published to a package index like PyPI for use
in notebooks and Python scripts. To make Symphony interfaces
available in Jupyter notebooks, Symphony’s Python wrapper also
makes each component an ipywidget [32]. The ipywidgets API
renders web-based widgets in the Jupyter notebook UI and syn-
chronizes its variables with the Python kernel. Data tables like
Pandas DataFrames or Apache Arrow tables, along with an end-
point for raw instance fles, can be passed to Symphony’s Python
wrapper to connect components to the data.
Using Symphony in Python (e.g. a notebook)
import pandas as pd
from symphony import Symphony

Import three Symphony components
from symphony_summary import SymphonySummary
from symphony_list import SymphonyList
from symphony_duplicates import SymphonyDuplicates

Load data
IMAGE_PATH = 'images/cifar/'
metadata_table = pd.read_parquet('table.parquet')

Initialize Symphony
symph = Symphony(metadata_table, files_path=IMAGE_PATH)

Use Symphony components
symph.widget(SymphonySummary)
symph.widget(SymphonyList)
symph.widget(SymphonyDuplicates)

The second wrapper we implemented is for standalone, web-
based dashboards. To support this, each Symphony component
overrides an export function which is used by Symphony to trans-
form selected visualization components from Python code into
web-based UIs. Components can be confgured before export to be
placed on diferent subpages and arranged within these pages to ft
particular use cases, as shown in Figure 5. These dashboards can
be authored in programming environments and then exported as a
statically hosted websites. The wrapper for web-based UIs provides
an HTML fle which imports components as independent JavaScript
(ES6) modules. Since Symphony components are compiled to pure
JavaScript fles, the standalone dashboard does not need a dedicated
backend and can be hosted on a static fle server.

https://Three.JS

Symphony CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

A

B

C

D

Figure 4: A list component looking at audio samples from the ESC-50 environmental noise classifcation dataset. The toolbar
on the right has UI elements for the diferent interactions tools available in Symphony. The user (A) has increased the number
of instances shown per page, and then (B) fltered to see only car horn noises. They then (C) grouped by the “take” feature,
and (D) selected a set of interesting instances. In a notebook a user can also set these parameters from code.

Compose a Symphony web dashboard
symph.widget(SymphonySummary, page="Overview")
symph.widget(SymphonyList, page="Overview", width="M")
symph.widget(SymphonyDuplicates, page="Data Analysis",

width="M", height="L")

Export Symphony as a standalone web dashboard
symph.export('./standalone', name="Cifar 10")

Run the Symphony dashboard in a web browser
symph.serve_static('./standalone')

New wrappers can be written to include Symphony components
in other platforms. For example, we began to explore how we can
enable users without programming experience to create Symphony
UIs using a drag-and-drop dashboard builder. We have also experi-
mented with integrating Symphony components in other interactive
programming environments like Streamlit [31] or Glinda [14].

5.3 Interactive Exploration Tools
The fnal key feature of Symphony is a set of tools for interacting
with and exploring data. Each component has the same interaction
tools, and changes are reactively synchronized between compo-
nents both in Jupyter notebooks and in web-based UIs. For the
web-based UI, state changes are also saved in the URL, allowing
stakeholders to share specifc fndings. Symphony’s interaction
tools were derived both from common interactions described by
participants in the formative study and fndings from visualization
research [2, 67]. We included a subset of tools that we found to
be important for the specifc components we implemented. These
tools include data fltering, grouping, and instance selection. Addi-
tional interaction tools can be added to Symphony by updating the
main Symphony package and platform wrappers with the new tool,
which is then available on diferent platforms and synchronized

across components. New interaction tools can then be accessed and
modifed by individual Symphony components.

Users have three ways of using Symphony’s interaction tools:
through a UI toolbar, Symphony components themselves, or code.
The UI toolbar (Figure 4, right) is available both in interactive pro-
gramming environments (Figure 2, left) and the web-based dash-
boards (Figure2, right). We implemented this toolbar as another
Symphony component, which is shown alongside each component
in Jupyter notebooks for convenient access, and displayed as a
consistent sidebar for the web-based dashboard. Apart from the
UI toolbar, components not only have direct access to the global
Symphony state but can also modify it based on user interaction. For
example, individual data samples can be selected from whichever
component they are viewed in. Thus, component developers can
add custom controls to manipulate Symphony’s state. Lastly, ML
practitioners may want to make more complex data transformations
that cannot be mapped to UI components. For such use cases, Sym-
phony’s state can also be directly be manipulated within Python.
Whether in a notebook or Python script, users can set and retrieve
any of the state variables. In Jupyter notebooks, this allows for fuid
interactions between UI and code in the style of Kery et al. [36]. Ad-
ditionally, Symphony’s state can be extracted from the web-based
UI and loaded into Python-based notebooks, making fndings from
shared Symphony dashboards available to the ML practitioners in
code-based environments.
Get selected items in GUI as a Python list
selected_items = symph.get_selected()

Set selected items in GUI from a Python list
symph.set_selected(python_list)

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Bäuerle and Cabrera, et al.

A Dataset Overview

B Data Cleaning

C Model Analysis

Figure 5: Symphony supports a diverse range of ML tasks.
Here we show examples of three distinct dashboards: (A) A
dataset overview with a textual description of the data’s ori-
gin, distribution plots, and example data instances. ML prac-
titioner can use this report to understand what a dataset con-
tains and what tasks they can use it for. (B) A data validation
dashboard to help ML practitioners track issues during data
collection, such as duplicate or out-of-distribution instances.
(C) A model analysis dashboard for exploring the perfor-
mance of an ML system. Users can fnd groups of incorrectly
classifed instances in the embedding and drill down into
fairness metrics with respect to diferent data subgroups.

6 PARTICIPATORY DESIGN SESSIONS
With the initial Symphony framework, we conducted a series of
participatory design sessions to understand the specifc needs of
ML teams and design and develop an initial set of Symphony compo-
nents. We conducted 10 sessions where each session had between
1 and 7 people, with a total of 31 people across all sessions. We
recruited and contacted teams via internal mailing lists, and the
sessions lasted between 30 minutes and an hour. The frst half of
each session consisted of a demonstration of a Symphony prototype
based on a mock dataset. In the second half of each session, we
asked participants to refect on and describe their own work and
asked them about what additional features would be necessary to
integrate Symphony into their workfows.

6.1 Expanding Symphony’s Technical
Capabilities

From these participatory design sessions, we extracted a set of ad-
ditional needs and wants for Symphony. Rather than the high-level
goals presented in Section 4, the fndings from the participatory
design sessions are more technical and tied to the implementation
of Symphony.

While displaying images directly in computational notebook
components was greatly appreciated by the participants working in
computer vision, the teams working in diferent domains expressed
interest in previewing and visualizing other data types. To demon-
strate Symphony’s ability to support other unstructured data types,
we made the display of data sample modular and added audio data
as an additional supported data type. To visualize other types of
data, a developer just has to implement a rendering function for
the new data which all components can use.

Some teams work with large models trained on big data, which
originally exceeded Symphony’s ability to scale and led to long
load times. In response, we implemented pagination for all the
components that display raw data. Depending on the data type, the
number of samples per page can be adjusted, allowing Symphony
to scale to millions of data samples. For even larger datasets, where
a ML practitioner wants to load and visualize hundreds of millions
of data points, the browser memory becomes a limiting factor for
holding the backing metadata table. For these truly large datasets,
we suggest users select representative subsets for detailed analysis;
however, scaling beyond millions of data instances is described in
Figure 8.

Interactive exploration is a powerful analysis technique when de-
veloping ML systems. However, for ML projects that contain many
datasets, compounded when data or models are rapidly chang-
ing, participants expressed interest in automatically generating
shareable dashboards and reports to support streaming data and
automatic model retraining. Apart from providing Symphony as
an authoring tool in computational notebooks, ML practitioners
can also write Python scripts that consume ML data and model
outputs, assemble a selection of components, and create and export
a standalone Symphony web UI.

Symphony CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Candidate Group 1

Candidate Group 2

F DuplicatesD 3D Path E Map

G Familiarity
Least Familiar Instances

H Projection I Confusion Matrix J Hierarchical Conf. Matrix K FairVis

False Positive Rate

B List C SummaryA Markdown
Data Collection

Labelling Process

Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut
labore et dolore magna aliqua.

Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed.

Figure 6: The Symphony components we implemented as a result of the participatory design sessions. (A) Markdown text for
data and model details. (B) A paginated list of instances. (C) Distribution charts for metadata columns. (D) 3D path visualiza-
tions for sensor and inertial measurement unit (IMU) data. (E) Map visualizations for geographic data. (F) Potential duplicate
instances. (G) Familiar and unfamiliar instances in a dataset. (H) 2D projection for model embeddings. (I) Binary confusion
matrix. (J) Confusion matrix for hierarchical classifcation models. (K) Fairness analyses of intersectional subgroups.

6.2 Implemented Symphony Components for
Data and Model Analysis

Informed by the feedback and needs expressed in the participatory
design sessions, we implemented an initial set of 11 components
shown in Figure 6. These initial components cover various data and
model analysis tasks, from fnding potential duplicates in a dataset
to auditing models for biases. We created all components using the
component cookiecutter template described in Figure 5.1.

The frst set of components created cover overview descriptions
and summaries of an ML dataset. The markdown component (A) lets
Symphony replicate existing documentation methods like Datasheets
and Model Cards by writing rich text content. Users can follow ex-
isting guidelines to document essential information about a dataset
or model often overlooked or not described. The list component (B)
shows a paginated list of data instances, with support for a variety
of data types like images and audio. Multiple ML practitioners re-
quested this feature, since they currently use fle explorers outside
of a notebook or one-of functions to look at individual instances.
Distribution charts and counts in the summary component (C) pro-
vide a high-level overview of data and can help detect potential
biases or skews in a dataset. Lastly, we developed two additional
components, a 3D path component (D) and map component (E), for
exploring specifc data types like health sensor data and geographic
distributions.

We also implemented a set of components for more complex
analysis of unstructured datasets that were important to multiple
teams. We frst compute a model embedding from a deep learning
model on the provided data instances, from which diferent metrics
are calculated. For the frst of these components we use a nearest
neighbors algorithm based on cosine distance in embedding space
to fnd potential groups of duplicate instances (F), which could
impact training performance or the validity of test set accuracy. In
the next component, we ft a Mixture of Gaussians model on the
embeddings to calculate a familiarity score for each data point. We
fnd the most and least familiar instances in a dataset (G) by sorting

by familiarity score. Instances with low familiarity scores can be
outliers or mislabeled instances, while high familiarity instances
can show over-represented types of data. Finally, there is a 2D
projection embedding (H) that shows a dimensionality reduced
representation of the embeddings. The embedding can be used to
fnd various interesting data and model patterns and is especially
useful when used to explore insights found in other components.

The last set of components we implemented focus on analyzing
and debugging ML models. The classic confusion matrix component
(I) is important for initial debugging of classifcation models. Other
classifcation tasks that use data with hierarchical or multi-label
data can be explored using a hierarchical confusion matrix com-
ponent (J). We primarily implemented this component for a team
in the participatory design sessions that was working on hierar-
chical classifcation models. Lastly, we built a set of visualizations
for analyzing model performance across intersectional subgroups
(G) based on a system by Cabrera et al. [9]. The visualization can
help users audit their models for biases, something which multiple
product teams were interested in.

We used three diferent methods for implementing the above
Symphony components. Symphony components are Svelte and
JavaScript (JS) fles, so authors can create new visualizations with
their preferred front-end libraries. For components without exist-
ing libraries, we used JavaScript in combination with visualization
packages such as Vega and D3. Symphony can also use of-the-shelf
JS libraries, for example, we used REGL Scatterplot [42], a WebGL
library, to create the projection component. Lastly, since Symphony
components are made with Svelte, we can also directly use Svelte
components, which is what we did with the Hierarchical Confusion
Matrix. These diferent strategies for creating components provide
the fexibility to implement custom visualizations while also allow-
ing developers to use of-the-shelf libraries and visualizations.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Bäuerle and Cabrera, et al.

7 CASE STUDIES ON DEPLOYED ML SYSTEMS
Lastly, we evaluated Symphony with ML practitioners and stake-
holders working on real-world ML products. We worked with three
ML teams at Apple, drawn from the participatory design sessions,
to integrate Symphony with their data and ML pipelines. The teams
focus on diferent machine learning tasks, namely dataset creation
and labeling, accessibility research, and ML education. To under-
stand the afordances and limitations of Symphony, we conducted
think-aloud studies lasting 60 minutes where a member of each
team used Symphony to explore a Jupyter notebook and create a
web-based dashboard for their data and model. While feld studies
like ours excel at capturing how participants actually work, this
data has to be collected opportunistically. We believe these case
studies capture the target audience of Symphony, cross-functional
teams working on modern ML models trained on unstructured data,
but may have some insights specifc to organizational workfows.

Before the study, we sent a member of each team, the main par-
ticipant, a Jupyter notebook that imported their data and displayed
a set of Symphony components applicable to their domain and task.
The study was split into three main sections. For the frst third of
the study, we asked the team to think aloud while the main partici-
pant used the notebook and Symphony components to explore the
data and model freely. In the second part of the study, we asked
the main participant to export the Symphony components (using a
command in the notebook) to a standalone dashboard and continue
exploring in the exported web UI. For the fnal part of the study,
we asked the team for feedback on Symphony and discussed what
types of use cases or limitations they found.

7.1 Case Study I: Validating and Sharing Data
Patterns on a Dataset Creation Team

For the frst case study, we worked with a team that assembles and
labels large machine learning datasets. Their datasets are composed
of labeled images and videos which they publish to an internal
data repository. The team was interested in using Symphony in two
ways, frst, using it during dataset creation to detect errors in the
data and labels, and second, as a reporting tool to give consumers
of the dataset details about the data. Given these requirements, we
loaded Symphony with the list (Figure 6 (B)), summary (Figure 6
(C)), duplicates (Figure 6 (F)), familiarity (Figure 6 (G)), projection
(Figure 6 (H)), and map (Figure 6 (E)) components.

The main participant started in the notebook and used multiple
components and interaction tools in concert to spot unexpected
patterns in their data. They made extensive use of Symphony’s
toolbar to combine flters and select subsets of data in which they
were interested. When using the notebook, they commented that
“there are a lot of neat things here, frst, the flter carried over, and it
is so cool to see the data samples and metadata within the notebook.”
The synchronized, reactive state let them validate insights from the
fltered summary charts with the actual raw instance previews in
the list view. Next, the main participant moved on to the duplicates
and familiarity components, where they found a couple of labeling
errors that they suspected existed in their dataset but had not been
able to validate previously. After transitioning to the standalone
dashboard, the frst component they looked at was the projection
visualization. They used the projection to fnd a closely clustered

group of instances where a few highlighted points that the model
had misclassifed. In the standalone dashboard, they also dubbed the
map visualization “very useful” , especially when sharing reports
of their data collection eforts with managers or policymakers.

Overall, the team found “a lot of value here” when using Sym-
phony. They mentioned that the workfow they would most pre-
fer would be automatically generating shareable reports for every
dataset they published: “programmatic generation and live visu-
alizations are awesome, being able to pop these charts into all our
READMEs would be amazing.” They saw the standalone dashboard
that they created with Symphony as a “great starting point” for
analyzing their datasets, and that they could see people use the
notebooks for more detailed analysis: “if people want to drill down
more, and get exact specifc access, summon the notebook.” Being
able to create diferent interfaces with subsets of visualization com-
ponents was important for them as well, as diferent audiences
have diferent needs and they “do not want customers to do the data
cleanup” for them.

The team also identifed usability issues and limitations in Sym-
phony. When initially using the projection component, the main
participant was not sure what it showed and thought that “this
component would need some introduction, as it has complex controls.”
They also requested additional components, such as heatmaps and
other 2D graphs, to do a more detailed analysis of distributions.
Lastly, the main limitation for directly using Symphony was not
being able to attach the raw data fles to a Symphony interface as
their data samples are often not hosted and too large to duplicate.

7.2 Case Study II: Debugging Training Data on
an Accessibility Team

In the second case study, we worked with a team that uses ML
to make software applications more accessible. They have a large
dataset of icon screenshots for which we assembled a similar set of
components to the dataset creation team. We included the summary
(Figure 6 (F)), duplicates (Figure 6 (A)), familiarity (Figure 6 (B), and
projection (Figure 6 (H)) components .

When exploring the notebook, the participant found the du-
plicates, familiarity, and scatterplot components to be the most
interesting. Since they use an automated approach to collect their
data, the participant assumed that there were likely duplicates in
the dataset but had protocols to ensure they would not be across
the training and testing set. Using the duplicates component, they
confrmed that a signifcant number of icons were duplicates, but
when they used the grouping interaction to split the data by test-
ing and training they found that a signifcant number of instances
were duplicated across the two datasets. The combination of the
duplicates visualization and grouping interaction tool helped them
discover that they “were cheating learning on samples we test for.”
The participant identifed the problematic duplicates and selected
them in the notebook to remove from the test set with a Python
command later. Next, the participant explored the familiarity com-
ponent and found a large number of similar grey icons, based on
which they wondered if “the model might overft on these samples.”
Finally, using the projection visualization, they found a dispersed
cluster of instances with diferent labels. When they selected the
group, they found that the instances were all PNG images in the

Symphony CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

test set, while the training set only contained JPEG images. The par-
ticipant then mentioned they “want to test their model specifcally
on PNG images to assess how the model generalized.”

Overall, the participant mentioned that they would “want to
try and use this to share insights within the team.” Additionally,
they found the notebook-based visualizations personally useful
to “look into the data,” which they had previously done manually
using a fle explorer outside of the notebook. They mentioned that
they would likely use a computational notebook to explore data,
and only use the standalone dashboards to share insights or when
they wanted more visualization space. The main feature the team
wanted was to combine data and model fndings to understand the
impact of data changes: “it would be super helpful to also add models
and combine model analysis with existing components.” While this
analysis is possible with existing model analysis components, future
components could specifcally combine data and model information.

7.3 Case Study III: Promoting Data Exploration
for ML Novices on an Education Team

For the fnal case study, we collaborated with a team focused on ML
education. They teach courses about ML principles and techniques
to engineers, and also teach their audience about data and model
analysis tools. They sent us a list of datasets they commonly explore
with students from which we selected two representative datasets,
one audio dataset for data analysis and one image dataset for model
analysis. For the audio dataset we used the same components as in
the previous evaluation. To support model analysis for the image
dataset, we used the summary (Figure 6 (F)), hierarchical confusion
matrix (Figure 6 (D)), FairVis (Figure 6 (K)), and projection (Figure 6
(H)) components.

The team was interested in how they could use separate com-
ponents in concert. They used the cross-fltering and grouping
heavily to combine, for example, the projection visualization with
the summary component to spot misclassifed samples. They also
used the confusion matrix visualization in combination with our
fltering tool. For example, they fltered out the correctly classifed
data samples from the metadata table to highlight misclassifca-
tions and described the resulting confusion matrix as “a fantastic
graphic.” They were also intrigued by being able to display a list
of data samples in notebooks or a standalone dashboard, as they
“constantly tell [their] students to look at a lot of examples” but are
currently limited to seeing one or two instance at a time and “just
graph things using matplotlib or pillow.”

Overall, the team found Symphony to be a valuable tool for ML
tasks and thought it could play a part in one of their lessons, as
“promoting looking at data is extremely important.” They remarked
that “in Python, its very easy to ignore the data, anything you can
do to bring the data to the forefront is great.” Thus, they wanted
to use Symphony during their courses in multiple ways, namely
using the “notebook for generating interfaces, then exporting them
to teach a group such that they can open the website and everyone
can explore on their own or follow my instructions.” This way, they
hoped that “[students] can play with it and experiment talk about
how to communicate results for ML models.” They also particularly
liked the option to assemble visualizations, for example when their

students learn how to “communicate fndings to executives” and
“graphing the relevant, and hiding the irrelevant.”

As for limitations, they wanted to be able to unlink the state
of diferent components to experiment with them independently.
They also mentioned that they would like to load more data types
than just the currently implemented audio, images, and tabular data,
namely text data. While this is not possible right now, Symphony
could be extended to more data types by augmenting the data
sample adapter we provide.

8 LIMITATIONS AND FUTURE WORK
In both the pilot studies and case studies, we found ways in which
Symphony could be further improved.

Authoring components. Symphony components are written using
JavaScript code and web-based visualization libraries. Programming
these visualizations requires expertise in web development and
visualization, which limits who can create new components. Future
work could explore ways to lower the barrier to authoring new
visualization components. Potential strategies to make component
creation more accessible include using grammars for interactive
graphics, such as Vega [52], or UI-based visualization builders like
Tableau [43]. Additional research would be needed to make these
tools more expressive for unstructured data and ML models.

Scaling past millions of data points. Symphony currently loads
the backing metadata table used for Symphony into web browser
memory. This scales to tens of millions of data points, which, while
sufcient for many modern ML tasks, does not cover all domains. In
our design sessions, we spoke to teams with terabyte-scale metadata
tables that do not ft in browser memory. Future work could explore
ways to support this scale while still providing direct interactivity
with the underlying data and models. Using an external API or
backend for data processing combined with more efcient data
queries could support massive data but would limit where the web-
based UI could be used.

Beyond conventional data science platforms. In this work, we im-
plemented Symphony wrappers for computational notebooks, pro-
gramming environments, and web-based dashboards. While these
platforms cover a signifcant portion of where ML work happens,
future work could explore how Symphony could be incorporated
into other platforms, especially those which are currently isolated
from data science work. For example, Symphony interfaces could
be included in messaging services, documents, presentations, or
issue trackers to further bring the benefts of Symphony to more
people. New design studies could be conducted to understand how
users in common communication platforms like instant messaging
would beneft from and use Symphony components.

Guided usage of Symphony. ML practitioners can use Symphony
for a wide array of ML analyses, from dataset debugging to auditing
models for bias. This gamut of uses stands in contrast to more
prescriptive approaches like Datsheets [17], Model Cards [46], and
checklists [44] which defne an ordered list of what an ML interface
should show. While ML practitioners can use Symphony for more
types of analyses, it does not provide any guidance to users about
which components might be the most adequate or useful for a given

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Bäuerle and Cabrera, et al.

task. Future work could look at combining Symphonys open-ended,
exploratory approach with more prescriptive guidance.

Scope of case study fndings. Lastly, our case studies were con-
ducted with ML practitioners at a single institution that works
on large ML models trained on unstructured data, often using
notebooks and visualization dashboards. While we believe these
tools and ML development practices exist widely in industry and
academia, we recognize some of our fndings may not generalize
to other organizations or types of users such as machine learning
enthusiasts, hobbyists, or small teams. Further studies could explore
Symphony’s afordances and drawbacks in these distinct settings.

9 DISCUSSION
Symphony provides a common substrate for ML interfaces that
enables both exploratory analysis and sharable ML interfaces. By
meeting diferent users where they work, Symphony empowers
each member of an ML team to have direct access and knowledge
of the data and models powering an AI product.

While the case studies described scenarios where ML practition-
ers work in programming environments and then transition to
web-based UIs, we also observed in our studies that ML practition-
ers can beneft from going the opposite direction: transitioning from
a web-based UI back to a programming environment. When a user
fnds an interesting insight in a standalone Symphony dashboard,
they can copy their fndings to the programming environments
along with state variables like flters and groups. Existing analysis
tooling often sufers from an “expressiveness clif”, where only a
fxed set of visualizations and data manipulations is available. Sym-
phony allows users to return to programming environments where
they have more fexible analysis tools.

ML practitioners’ desire to use Symphony for exploration could
also encourage them to share their insights more frequently. If
ML practitioners are using a set of Symphony components for ex-
ploratory analysis in a notebook, no additional work is needed
for them to export it as a standalone, shareable UI. Participants
mentioned the ability to programmatically combine components
as a major beneft, allowing them to go from exploration to an in-
teractive, web-based UI without using a diferent tool. Additionally,
Symphony interfaces can be redeployed continuously whenever the
data and model are updated, supporting ML tasks with streaming
data or automatic model retraining.

By integrating with existing data science platforms, Symphony
could also encourage broader use of task-specifc ML visualizations.
ML visualization systems are often implemented as one-of web
dashboards [1, 9, 10, 22, 39, 64] that require users to wrangle and
export their data into systems separate from where they do ML
development. Symphony includes task-specifc visualization com-
ponents directly in data since platforms like Jupyter notebooks,
and the components can consume data from standard data APIs
like Pandas Data Frames. In turn, implementing ML visualizations
as independent components in a framework like Symphony could
increase their use and longevity.

Beyond helping individuals understand ML systems, Symphony
is intended to foster a shared organizational understanding [69]
between stakeholders on an ML team. Symphony interfaces act

as boundary objects for large, cross-functional ML teams. Bound-
ary objects are artifacts that are “both plastic enough to adapt to
local needs and the constraints of the several parties employing them,
yet robust enough to maintain a common identity across sites” [56].
Symphony can serve as a boundary object for ML teams, providing
interfaces that adapt to the diferent needs of stakeholders. At the
same time, “The creation and management of boundary objects is
a key process in developing and maintaining coherence across in-
tersecting social worlds” [56]. Symphony aids in this creation and
management process, bridging the gap between the intersecting
worlds of diferent ML stakeholders such as engineers, designers,
and product managers.

10 CONCLUSION
In this work, we designed and implemented Symphony, a frame-
work for composing interactive ML interfaces with data-driven,
task-specifc visualization components. Symphony’s visualizations
helped ML teams fnd important issues such as data duplicates and
model blind spots. Additionally, We found that by providing ML
interfaces in the data science platforms where ML practitioners
work, Symphony can encourage ML practitioners to want to use
and share insights. With data-driven components that diverse stake-
holders across an ML team can use, Symphony fosters a culture of
shared ML understanding and encourages the creation of accurate,
responsible, and robust AI products.

ACKNOWLEDGMENTS
We thank our colleagues at Apple for their time and efort integrat-
ing our research with their work. We especially thank Kayur Patel
for his guidance and Mary Beth Kery for her generosity reviewing
early drafts of this work.

REFERENCES
[1] Yongsu Ahn and Yu-Ru Lin. 2019. Fairsight: Visual analytics for fairness in

decision making. IEEE Transactions on Visualization and Computer Graphics 26, 1
(2019), 1086–1095.

[2] Robert Amar, James Eagan, and John Stasko. 2005. Low-level components of
analytic activity in information visualization. In IEEE Symposium on Information
Visualization, INFO VIS. IEEE, 111–117.

[3] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. Modeltracker: Redesigning performance analysis
tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. 337–346.

[4] Matthew Arnold, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep
Mehta, Aleksandra Mojsilović, Ravi Nair, K Natesan Ramamurthy, Alexandra
Olteanu, David Piorkowski, et al. 2019. FactSheets: Increasing trust in AI services
through supplier’s declarations of conformity. IBM Journal of Research and
Development 63, 4/5 (2019), 6–1.

[5] Andrea Batch, Niklas Elmqvist, and Senior Member. 2018. The interactive visual-
ization gap in initial exploratory data analysis. IEEE Transactions on Visualization
and Computer Graphics 24 (2018), 278–287.

[6] Alex Bäuerle, Heiko Neumann, and Timo Ropinski. 2020. Classifer-guided visual
correction of noisy labels for image classifcation tasks. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 195–205.

[7] Emily M Bender and Batya Friedman. 2018. Data statements for natural lan-
guage processing: Toward mitigating system bias and enabling better science.
Transactions of the Association for Computational Linguistics 6 (2018), 587–604.

[8] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accu-
racy disparities in commercial gender classifcation. In Conference on Fairness,
Accountability and Transparency. PMLR, 77–91.

[9] Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie
Morgenstern, and Duen Horng Chau. 2019. FairVis: Visual analytics for discov-
ering intersectional bias in machine learning. In 2019 IEEE Conference on Visual
Analytics Science and Technology. IEEE, 46–56.

Symphony CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[10] Dylan Cashman, Adam Perer, Remco Chang, and Hendrik Strobelt. 2019. Ablate,
variate, and contemplate: Visual analytics for discovering neural architectures.
IEEE Transactions on Visualization and Computer Graphics 26, 1 (2019), 863–873.

[11] Changjian Chen, Jun Yuan, Yafeng Lu, Yang Liu, Hang Su, Songtao Yuan, and
Shixia Liu. 2020. Oodanalyzer: Interactive analysis of out-of-distribution samples.
IEEE Transactions on Visualization and Computer Graphics 27, 7 (2020), 3335–3349.

[12] Nan-Chen Chen, Jina Suh, Johan Verwey, Gonzalo Ramos, Steven Drucker, and
Patrice Simard. 2018. AnchorViz: Facilitating classifer error discovery through in-
teractive semantic data exploration. In 23rd International Conference on Intelligent
User Interfaces. 269–280.

[13] European Commission. 2019. Ethics guidelines for trustworthy AI. https://digital-
strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

[14] Robert A DeLine. 2021. Glinda: Supporting data science with live programming,
GUIs and a Domain-specifc Language. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1–11.

[15] Luciano Floridi. 2019. Establishing the rules for building trustworthy AI. Nature
Machine Intelligence 1, 6 (2019), 261–262.

[16] Jules Françoise, Baptiste Caramiaux, and Téo Sanchez. 2021. Marcelle: Composing
interactive machine learning workfows and interfaces. In The 34th Annual ACM
Symposium on User Interface Software and Technology. 39–53.

[17] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna Wallach, Hal Daumé Iii, and Kate Crawford. 2021. Datasheets for datasets.
Commun. ACM 64, 12 (2021), 86–92.

[18] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[19] Lisa Anne Hendricks, Kaylee Burns, Kate Saenko, Trevor Darrell, and Anna
Rohrbach. 2018. Women also snowboard: Overcoming bias in captioning models.
In Proceedings of the European Conference on Computer Vision. 771–787.

[20] Andreas Hinterreiter, Peter Ruch, Holger Stitz, Martin Ennemoser, Jurgen
Bernard, Hendrik Strobelt, and Marc Streit. 2020. Confusionfow: A model-
agnostic visualization for temporal analysis of classifer confusion. IEEE Transac-
tions on Visualization and Computer Graphics (2020).

[21] Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. 2018. Visual
analytics in deep learning: An interrogative survey for the next frontiers. IEEE
Transactions on Visualization and Computer Graphics (2018). https://doi.org/10.
1109/TVCG.2018.2843369

[22] Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng Polo Chau. 2019.
Summit: Scaling deep learning interpretability by visualizing activation and
attribution summarizations. IEEE Transactions on Visualization and Computer
Graphics 26, 1 (2019), 1096–1106.

[23] Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia Chmielin-
ski. 2018. The dataset nutrition label: A framework to drive higher data quality
standards. arXiv preprint arXiv:1805.03677 (2018).

[24] Holoviz. 2021. Panel. https://panel.holoviz.org/
[25] J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science

& Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55
[26] DataBricks Inc. 2021. DataBricks. https://databricks.com/
[27] Google Inc. 2021. Facets. https://pair-code.github.io/facets/
[28] Google Inc. 2021. Know Your Data. https://knowyourdata.withgoogle.com/
[29] Observable Inc. 2021. Observable. https://observablehq.com/
[30] Plotly Technologies Inc. 2015. Collaborative data science. Montreal, QC. https:

//plot.ly
[31] Streamlit Inc. 2021. Streamlit. https://streamlit.io/
[32] Jupyter. 2021. IPyWidgets. https://ipywidgets.readthedocs.io/en/stable/
[33] Minsuk Kahng, Pierre Y. Andrews, Aditya Kalro, and Duen Horng Polo Chau.

2018. ActiVis: Visual exploration of industry-scale deep neural network models.
IEEE Transactions on Visualization and Computer Graphics 24 (2018), 88–97. Issue
1. https://doi.org/10.1109/TVCG.2017.2744718

[34] Minsuk Kahng, Dezhi Fang, and Duen Horng Chau. 2016. Visual exploration of
machine learning results using data cube analysis. HILDA 2016 - Proceedings of
the Workshop on Human-In-the-Loop Data Analytics (2016). https://doi.org/10.
1145/2939502.2939503

[35] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A
Myers. 2018. The story in the notebook: Exploratory data science using a literate
programming tool. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. 1–11.

[36] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid moves between code and graph-
ical work in computational notebooks. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology. 140–151.

[37] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safa Abdalla, and Carol
Willing. 2016. Jupyter Notebooks – a publishing format for reproducible com-
putational workfows. In Positioning and Power in Academic Publishing: Players,
Agents and Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, 87 – 90.

[38] Laura Koesten, Emilia Kacprzak, Jeni Tennison, and Elena Simperl. 2019. Col-
laborative practices with structured data: Do tools support what users need?. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–14.

[39] Josua Krause, Adam Perer, and Kenney Ng. 2016. Interacting with predictions:
Visual inspection of black-box machine learning models. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. 5686–5697.

[40] Alex Krizhevsky, Geofrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[41] Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,
Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and
Aditya G. Parameswaran. 2022. Lux: Always-on visualization recommendations
for exploratory data science. Proceedings of the VLDB Endowment 15, 3 (2022),
727–738.

[42] Fritz Lekschas. 2021. Regl Scatterplot. https://github.com/fekschas/regl-
scatterplot

[43] Tableau Software LLC. 2021. Tableau. https://www.tableau.com/
[44] Michael A Madaio, Luke Stark, Jennifer Wortman Vaughan, and Hanna Wallach.

2020. Co-designing checklists to understand organizational challenges and
opportunities around fairness in ai. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–14.

[45] Wes McKinney et al. 2010. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51–56.

[46] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,
Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.
Model cards for model reporting. In Proceedings of the Conference on Fairness,
Accountability, and Transparency. 220–229.

[47] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré.
2020. Hidden stratifcation causes clinically meaningful failures in machine
learning for medical imaging. In Proceedings of the ACM Conference on Health,
Inference, and Learning. 151–159.

[48] Kayur Patel, Naomi Bancroft, Steven M Drucker, James Fogarty, Andrew J Ko,
and James Landay. 2010. Gestalt: Integrated support for implementation and
analysis in machine learning. In Proceedings of the 23nd annual ACM Symposium
on User Interface Software and Technology. 37–46.

[49] Plotly. 2021. Dash. https://plotly.com/dash/
[50] Donghao Ren, Saleema Amershi, Bongshin Lee, Jina Suh, and Jason D. Williams.

2017. Squares: Supporting interactive performance analysis for multiclass classi-
fers. IEEE Transactions on Visualization and Computer Graphics 23 (2017), 61–70.
Issue 1. https://doi.org/10.1109/TVCG.2016.2598828

[51] Dominik Sacha, Michael Sedlmair, Leishi Zhang, John A Lee, Jaakko Peltonen,
Daniel Weiskopf, Stephen C North, and Daniel A Keim. 2017. What you see is what
you can change: Human-centered machine learning by interactive visualization.
Neurocomputing 268 (2017), 164–175.

[52] Arvind Satyanarayan, Ryan Russell, Jane Hofswell, and Jefrey Heer. 2015. Reac-
tive vega: A streaming datafow architecture for declarative interactive visual-
ization. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2015),
659–668.

[53] Ben Shneiderman. 2020. Bridging the gap between ethics and practice: Guidelines
for reliable, safe, and trustworthy Human-Centered AI systems. ACM Transactions
on Interactive Intelligent Systems 10, 4 (2020), 1–31.

[54] Jake Silberg and James Manyika. 2019. Notes from the AI frontier: Tackling bias
in AI (and in humans). McKinsey Global Institute (June 2019) (2019).

[55] Jacob Snow. 2018. Amazon’s face recognition falsely matched 28 members of
congress with mugshots. American Civil Liberties Union 28 (2018).

[56] Susan Leigh Star and James R Griesemer. 1989. Institutional ecology,translations’
and boundary objects: Amateurs and professionals in Berkeley’s Museum of
Vertebrate Zoology, 1907-39. Social Studies of Science 19, 3 (1989), 387–420.

[57] Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter
Pfster, and Alexander M. Rush. 2019. Seq2seq-Vis: A visual debugging tool for
sequence-to-sequence models. In IEEE Transactions on Visualization and Computer
Graphics, Vol. 25. 353–363. https://doi.org/10.1109/TVCG.2018.2865044

[58] Jacob VanderPlas, Brian Granger, Jefrey Heer, Dominik Moritz, Kanit Wong-
suphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott
Sievert. 2018. Altair: Interactive statistical visualizations for python. Journal of
Open Source Software 3 (2018), 1057. Issue 32. https://doi.org/10.21105/joss.01057

[59] Alfredo Vellido. 2020. The importance of interpretability and visualization in
machine learning for applications in medicine and health care. Neural Computing
and Applications 32, 24 (2020), 18069–18083.

[60] Voila. 2021. Voila. https://github.com/voila-dashboards/voila
[61] Angelina Wang, Arvind Narayanan, and Olga Russakovsky. 2020. REVISE: A

tool for measuring and mitigating bias in visual datasets. In European Conference
on Computer Vision. Springer, 733–751.

[62] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda
Viegas, and Jimbo Wilson. 2020. The what-if tool: Interactive probing of machine
learning models. IEEE Transactions on Visualization and Computer Graphics 26
(2020), 56–65. Issue 1. https://doi.org/10.1109/TVCG.2019.2934619

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://panel.holoviz.org/
https://doi.org/10.1109/MCSE.2007.55
https://databricks.com/
https://pair-code.github.io/facets/
https://knowyourdata.withgoogle.com/
https://observablehq.com/
https://plot.ly
https://plot.ly
https://streamlit.io/
https://ipywidgets.readthedocs.io/en/stable/
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1145/2939502.2939503
https://doi.org/10.1145/2939502.2939503
https://github.com/flekschas/regl-scatterplot
https://github.com/flekschas/regl-scatterplot
https://www.tableau.com/
https://plotly.com/dash/
https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.21105/joss.01057
https://github.com/voila-dashboards/voila
https://doi.org/10.1109/TVCG.2019.2934619

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[63] Benjamin Wilson, Judy Hofman, and Jamie Morgenstern. 2019. Predictive in-
equity in object detection. arXiv preprint arXiv:1902.11097 (2019).

[64] Tongshuang Wu, Marco Tulio Ribeiro, Jefrey Heer, and Daniel S Weld. 2019.
Errudite: Scalable, reproducible, and testable error analysis. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. 747–763.

[65] Yifan Wu, Joseph M Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
code and interactive visualization in computational notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
152–165.

[66] Shouxing Xiang, Xi Ye, Jiazhi Xia, Jing Wu, Yang Chen, and Shixia Liu. 2019.
Interactive correction of mislabeled training data. In 2019 IEEE Conference on

Bäuerle and Cabrera, et al.

Visual Analytics Science and Technology. IEEE, 57–68.
[67] Ji Soo Yi, Youn ah Kang, John Stasko, and Julie A Jacko. 2007. Toward a deeper

understanding of the role of interaction in information visualization. IEEE
Transactions on Visualization and Computer Graphics 13, 6 (2007), 1224–1231.

[68] J M Zhang, M Harman, L Ma, and Y Liu. 2020. Machine learning testing: Survey,
landscapes and horizons. IEEE Transactions on Software Engineering (2020), 1.
https://doi.org/10.1109/TSE.2019.2962027

[69] Ángel Cabrera and Elizabeth F. Cabrera. 2002. Knowledge-sharing dilemmas. Or-
ganization Studies 23, 687–710. Issue 5. https://doi.org/10.1177/0170840602235001

https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1177/0170840602235001

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Documenting Data and Models
	2.2 Visualization for Machine Learning
	2.3 Interactive Programming Environments

	3 Formative Interviews
	4 Design Goals
	5 Symphony: A Framework for Composing Interactive Interfaces for Machine Learning
	5.1 Modular Components
	5.2 Platform Wrappers
	5.3 Interactive Exploration Tools

	6 Participatory Design Sessions
	6.1 Expanding Symphony's Technical Capabilities
	6.2 Implemented Symphony Components for Data and Model Analysis

	7 Case Studies on Deployed ML Systems
	7.1 Case Study I: Validating and Sharing Data Patterns on a Dataset Creation Team
	7.2 Case Study II: Debugging Training Data on an Accessibility Team
	7.3 Case Study III: Promoting Data Exploration for ML Novices on an Education Team

	8 Limitations and Future Work
	9 Discussion
	10 Conclusion
	Acknowledgments
	References

