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Figure 1: Symphony applies techniques from machine learning (ML) documentation, data visualization, and interactive pro-
gramming to create ML interfaces with interactive, task-specifc components. Diverse ML practitioners can explore their data 
and analyze their models where they work, both in computational notebooks and in web-based dashboards. 

ABSTRACT 
Interfaces for machine learning (ML), information and visualiza-
tions about models or data, can help practitioners build robust and 
responsible ML systems. Despite their benefts, recent studies of 
ML teams and our interviews with practitioners (n=9) showed that 
ML interfaces have limited adoption in practice. While existing ML 
interfaces are efective for specifc tasks, they are not designed to 
be reused, explored, and shared by multiple stakeholders in cross-
functional teams. To enable analysis and communication between 

∗Both authors contributed equally to this research.
†Work done at Apple. 

diferent ML practitioners, we designed and implemented Sym-
phony, a framework for composing interactive ML interfaces with 
task-specifc, data-driven components that can be used across plat-
forms such as computational notebooks and web dashboards. We 
developed Symphony through participatory design sessions with 10 
teams (n=31), and discuss our fndings from deploying Symphony 
to 3 production ML projects at Apple. Symphony helped ML prac-
titioners discover previously unknown issues like data duplicates 
and blind spots in models while enabling them to share insights 
with other stakeholders. 
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1 INTRODUCTION 
Successfully deploying machine learning systems in production is 
a complex, collaborative process that involves a wide range of ML 
practitioners, from data scientists and engineers to domain ex-
perts and product managers. A substantial amount of research has 
gone into creating ML interfaces for analyzing and sharing insights 
about ML systems that practitioners can use to better understand 
and improve deployed ML products. We describe machine learn-
ing interfaces as static or interactive artifacts, visualizations, and 
information that communicate details about ML data and mod-
els. ML interfaces include documentation methods (e.g., Model 
Cards [46], Datasheets [17]), visualization dashboards (e.g., What-if 
Tool [62], ActiVis [33], among many others [21]), and interactive 
programming widgets (e.g., ipywidgets [32], Streamlit [31]) that 
give practitioners insights into what their datasets contain and 
how their models behave. Despite the benefts and breadth of ML 
interfaces, recent studies have found that they are not as widely 
used and shared in practice as expected [38, 68]. This underuse can 
lead to missed data errors and model failures, a lack of shared team 
understanding of model behavior, and, ultimately, deployed ML 
systems that may be biased [8] or unsafe [47]. 

To understand why ML interfaces are not used more frequently, 
we interviewed 9 ML practitioners at Apple about their current 
machine learning practice and workfows. We found that while 
ML practitioners want to use them, current interfaces have limita-
tions that make them either insufcient or too time consuming to 
use. One category of ML interfaces are ML documentation methods, 
such as Model Cards [46] and Datasheets [17], which describe the 
details and records the provenance of an ML system’s data and 
model. Documentation methods often lack the interactive tools and 
visualizations necessary for specifc analyses and have to be manu-
ally authored and updated separately from where ML development 
happens. Another category of interfaces, visualization dashboards, 
consist of multiple coordinated views tailored to specifc domains 
and tasks. ML practitioners must learn a new platform and wrangle 
their data into the right format in order to use these bespoke sys-
tems, which also require signifcant work to reuse for diferent tasks. 
Finally, interactive programming widgets can render web-based ML 
visualizations directly in code environments. However, widgets 
typically cannot be used outside of the platform in which they were 
created and often lack complex visualizations required by modern 
ML models and unstructured data—non-tabular data types such as 
images, videos, audio, point-clouds, sensor data, etc. Overall, we 
found that while current ML interfaces work well for specifc tasks 
and platforms, they are not designed to be reused, explored, and 
shared by diverse stakeholders in cross-functional ML teams. 

Our formative research showed that ML work requires bespoke 
visualizations for complex models and data types which work across 
the diferent platforms ML practitioners use. To address these needs, 

we combined the afordances of existing ML interfaces to design and 
implement Symphony, a framework for creating and composing 
interactive ML interfaces with task-specifc, data-driven visualiza-
tion components. Symphony supports two popular platforms used 
by ML practitioners, code environments such as Jupyter notebooks 
and no-code environments such as web-based UIs (Figure 1). Sym-
phony components are JavaScript modules that use custom code or 
existing libraries to create task-specifc visualizations of structured 
and unstructured data. Each component is also fully interactive: 
users can flter, group, or select instances either through a UI tool-
bar or code. These interactions are reactively synchronized across 
Symphony components, enabling linked visualizations. Symphony’s 
cross-platform availability enables ML practitioners to use the same 
components for both exploring and sharing insights about their 
ML systems (Figure 2). 

We worked with ML teams at Apple to both design Symphony 
and apply it to deployed ML projects. To collect the diverse require-
ments and use cases for ML interfaces, we conducted participatory 
design sessions with 10 ML teams with a total of 31 ML practitioners. 
Informed by these sessions, we implemented a set of 11 components 
supporting a range of diferent models and data types. We then 
worked with 3 teams from the design sessions to deploy Symphony 
in their machine learning workfows and ran a think-aloud study 
with them to qualitatively evaluate Symphony. 

Teams using Symphony with their real-world data and models 
found surprising insights which they had not previously known, 
such as duplicate instances, labeling errors, and model blind spots. 
Participants also described a variety of use cases for Symphony, 
from creating automated dataset reports to analyzing model perfor-
mance in computational notebooks. Moreover, participants that did 
not previously share their analyses also showed interest in using 
Symphony in their teams to better communicate the state of their 
ML system with other stakeholders. 

The main contribution of this work is Symphony, a framework for 
composing interactive ML interfaces with task-specifc, data-driven 
visualization components. To design Symphony, we conducted for-
mative interviews, participatory design sessions, and case studies 
on deployed ML workfows with a total of 39 ML practitioners 
across 15 teams. Symphony enabled ML practitioners to discover 
signifcant issues like dataset duplicates and model blind spots, 
and encouraged them to share their insights with other stakehold-
ers. Symphony combines the following principles to improve upon 
existing ML interfaces: 

• Data-driven ML interfaces derived from and updated with 
ML data and models. 

• Task-specifc visualizations for unstructured data and 
modern machine learning models. 

• Interactive exploration tools for exploring diferent di-
mensions of an ML system. 

• Reusable components that can be used, composed, and 
shared across diferent platforms. 

2 BACKGROUND AND RELATED WORK 
Symphony bridges three areas of related work: ML documentation 
methods, data visualization dashboards, and interactive program-
ming environments. First, the Symphony framework can be used 
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Symphony in Notebooks Symphony in Web-based UIsA B

Figure 2: A demonstration of Symphony running in both (A) a computational notebook and (B) a web-based UI with the same 
visualization components and code. In a computational notebook, an ML practitioner passes their data and model outputs 
directly from Python variables like Pandas Data Frames [45] to Symphony components. The ML practitioner can then export 
the components to a self-contained, web-based UI. This example shows Symphony loaded with the CIFAR-10 [40] dataset and 
a trained image classifcation model. After reading a textual description of the dataset, a user found and selected duplicate car 
instances which were reactively highlighted in the projection component and the confusion matrix. The user then explored 
the confusion matrix to determine if the duplicates could be impacting model performance. 

to write and share ML documentation. Second, Symphony compo-
nents can show complex visualizations and be composed into visual 
analytics dashboards to help ML practitioners make sense of ML 
data and models (Section 2.2). Lastly, Symphony components can 
be used in and exported from interactive programming environ-
ments, like computational notebooks, which are often used by ML 
practitioners (Section 2.3). 

2.1 Documenting Data and Models 
A variety of documentation methods exist to help ML practitioners 
track and communicate details about their data and models. Without 
knowing what a dataset contains or what a model has learned, 
teams can inadvertently release AI products with issues like safety 
concerns and biases [13, 15, 53, 54], as seen in numerous deployed 
systems [8, 19, 55, 63]. 

Since machine learning models are a direct result of the data 
they were trained on, it is important to frst understand the data 
behind an ML system. Datasheets for Datasets [17] applies the idea 
of datasheets in electrical engineering to describe important at-
tributes of a dataset, such as collection methods and intended uses. 
Similar work has focused on specifc types of data, for example, 
Data Statements [7] are tailored to natural language processing 
datasets. These guidelines describe what should be included in 
documentation, not how an author can create or share the result-
ing artifact [38]. Additionally, these documents are static LATEX or 
text documents that are disjoint from the backing data and models 
and have to be manually updated. Since there is heterogeneity in 

what information is important for each dataset, Holland et al. [23] 
proposed the more general concept of Dataset Nutrition Labels, 
modular graphs describing diferent aspects of a dataset. Like Sym-
phony, these labels use modular visualizations, however, they focus 
on simple aggregate visualizations without displaying data samples 
and do not support platforms where ML practitioners do their work. 

A parallel line of research has focused on documenting machine 
learning models. Model Cards [46] and FactSheets [4] are similar 
concepts to Datasheets that can include important information and 
details about machine learning models. These model reports include 
information ranging from the model type and hyperparameters to 
aggregate metrics and ethical considerations. Similar to Datasheets, 
these types of documentation are disjoint from the backing data 
and do not include interactive visualizations of model details and 
performance metrics. 

2.2 Visualization for Machine Learning 
There are a growing number of visualization systems that help ML 
practitioners make sense of modern ML systems with unstructured 
datasets and machine learning models [21]. Visualizations can help 
ML practitioners in tasks such as auditing models for bias [9], un-
derstanding the internals of deep learning architectures [22], and 
guiding automatic model selection [10]. A full review of this lit-
erature is out of scope for this work, but we provide a sample of 
representative systems to highlight the types of visualizations that 
could be implemented as Symphony components. 
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Data science work often starts with and leads back to under-
standing the backing data. Modern machine learning models and 
tasks use unstructured data like images and audio that cannot be 
visualized and explored with tables and histograms. Systems like 
Know Your Data [28] and Facets [27] are visualization dashboards 
for exploring unstructured data. Other visual analytics systems 
process the data further to derive insights like outliers [11], biases 
in a dataset [61], or mislabeled data instances [66]. With a deeper 
understanding of their data, ML practitioners can more efectively 
debug and improve their models. 

The models ML practitioners use are often large, complex black-
box models like deep learning systems. Visualization systems like 
Summit [22] and Seq2Seq-Vis [57] can help ML practitioners de-
velop a better mental model of how their machine learning sys-
tems work and what they are learning. Another set of systems, 
including Model Tracker [3], Squares [50], AnchorViz [12], Con-
fusionFlow [20], What-if Tool [62], and MLCube [34], focus on 
performance analysis and provide diferent views of a model’s er-
rors Lastly, there are tools for detecting potential biases [1] or 
systematic errors [6, 64] in training data. These various of visual-
izations can be repackaged as Symphony components, for example, 
we implement a version of FairVis [9] as a component for auditing 
classifers for bias. 

Lastly, there are integrated systems that help ML practitioners 
both implement and visualize ML models. One of the frst systems 
describing such an integrated system is Gestalt [48], a develop-
ment environment with visualizations for training and analyzing 
classifcation models. A subsequent system focused on interactive 
machine learning is Marcelle [16], which uses composable stages 
and visualizations to create interactive ML interfaces. In contrast to 
Gestalt and Marcell, Symphony is focused on the analysis stage of 
ML systems, and includes important features such as cross-platform 
support, reactivity, and a consistent data API which are not available 
in Gestalt and Marcelle. 

ML data and model visualizations are often deployed as visual 
analytics dashboards that are separate from both interactive pro-
gramming environments that ML practitioners work with and ML 
documentation shared with other stakeholders. This separation lim-
its who can use visualizations to understand ML data and models. 
Symphony aims to bridge these worlds by bringing visualizations 
both into notebooks where data work happens and into the docu-
mentation shared with other stakeholders. 

2.3 Interactive Programming Environments 
ML practitioners often use interactive programming environments 
for exploring and modeling data since they can interact with and 
iterate on their ML systems [35]. These environments are most com-
monly implemented as computational notebooks like Jupyter [37], 
DataBricks [26], and Observable [29]. While computational note-
books have extensions for creating interactive visualizations, such 
as the ipywidgets API [32] for Jupyter, they are often underused [5] 
and hard to share [18, 35]. 

Several libraries exist for interactively visualizing data in note-
books. Graphing libraries such as Altair [58] and Plotly [30] allow 
users to create interactive charts but only support a fnite set of 
graphs and require users to manually defne what visualizations 

they want to use. Lux [41] and B2 [65] lower the cost of using visu-
alizations in notebooks by automatically providing relevant charts 
for users’ data frames. These approaches help analyze tabular data, 
but they lack the specifc visual representations needed for machine 
learning development. 

A separate challenge is sharing visualizations and other note-
book outputs outside of the notebook context. Voilà [60] tackles 
this challenge directly by exporting full Jupyter notebooks to a 
hosted website. ML practitioners can use Voilà to share notebooks 
that contain Symphony components, but it requires a Python kernel 
to be running and Voilà does not provide any visualizations itself. 
Two visualization frameworks similar to Symphony, Panel [24] and 
Plotly Dash [49], use independent components to create visualiza-
tions that can be used in both Jupyter notebooks and standalone 
websites. However, these tools also have limitations for creating 
complete ML interfaces: Panel visualizations are tied to the Jupyter 
ecosystem and lack interactivity without a Python backend, while 
Plotly Dash primarily supports Plotly charts and does not easily ex-
tend to custom visualizations. Symphony provides components that 
are fully interactive in both notebooks and web UIs, and support any 
JavaScript-based visualization. Additionally, Symphony’s shared 
state synchronizes its components, enabling reactive brushing and 
linking between views. 

More recent interactive programming environments have moved 
away from the notebook paradigm. For example, in the Stream-
lit [31] platform, users write Python scripts using a library that 
renders interactive components in a separate website. While Stream-
lit supports interactive components like Jupyter notebooks, it is 
primarily an environment focused on designing web applications 
rather than exploratory data science or ML reporting. Exploratory 
analysis is still often done in notebooks, and Streamlit requires 
users to learn a new platform. Other platforms are moving away 
from programming altogether, such as Glinda [14], a declarative 
language that lets ML practitioners describe analysis steps in a 
domain-specifc language. Glinda does not defne any specifc visu-
alizations, but it could be complemented by Symphony components. 
Since Symphony components are standalone JavaScript modules, 
future wrappers could integrate Symphony components into data 
science environments like Streamlit and Glinda. 

3 FORMATIVE INTERVIEWS 
To understand how ML interfaces are used in practice, we con-
ducted 7 semi-structured interviews with 9 participants at Apple. 
We recruited participants through internal emails and messaging 
boards and selected participants across a range of diferent roles, 
including engineers, designers, researchers, and testing roles that 
work on teams to build and deploy ML systems. Each interview 
was conducted over a video call and lasted about an hour. First, 
we asked participants about how they currently create and use dif-
ferent ML interfaces like documentation, visualization dashboards, 
and widgets. We then asked them what the main limitations and 
pain points are in current tools and what types of improvements 
they would fnd helpful. From these need-fnding interviews we 
identifed the following themes. 

Use cases for ML interfaces. All participants agreed that creating 
and sharing ML interfaces can help them build more robust and 
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capable ML products. Participants described use cases of ML in-
terfaces in myriad tasks, such as “fagging failures for review,” (P2) 
“detecting systematic failures,” (P4) and “fairness and bias education.” 
(P1) Participants also mentioned stages across the entire ML process 
in which ML interfaces can be useful, from “dataset curation and 
sharing” (P5) to analysis “after an ML model has been trained,” (P7) 
or “in all stages” (P1). Consequently, since diferent stakeholders 
involved in an ML product need specifc views of the data and 
models, ML interfaces must be fexible enough to support analysis 
across numerous tasks and domains. 

Ad-hoc tools and analyses. While all participants detailed clear 
use cases for ML interfaces, they also mentioned limitations pre-
venting them from using existing tools or sharing insights. One 
participant bluntly stated “right now, we basically have no tools” 
(P3) for analyzing ML systems. Instead, participants rely on ad-hoc, 
hand-crafted visualizations for their specifc analyses. For example, 
one of our participants said their process for looking at instances 
is to “manually examine icons in a fle explorer.” (P9) Another par-
ticipant “looks at handcrafted summaries of select data subsets” (P4) 
to do model analysis. Larger teams with more resources may have 
bespoke tools, such as one participant that “use[s] a team-internal 
tool to analyze data” (P6). Overall, a lack of adequate tooling leads to 
ML practitioners using one-of, manual tools or ML teams investing 
in their own, custom visualization systems. 

Limitations of existing ML interfaces. Participants detailed a vari-
ety of technical roadblocks and time-consuming processes prevent-
ing them from using existing ML interfaces. Many tools require 
users to wrangle and export their data into a specifc format be-
fore loading it into a custom system or dashboard. However, as 
one participant stated, “we do not have a lot of time for creating 
such visualizations:” (P1) ML practitioners simply do not have the 
bandwidth to do the setup and data wrangling work necessary to 
use separate systems. ML practitioners’ main priority is working 
on data and models, and “if it takes longer than 5-10 minutes, I am 
not going to [use an ML interface] immediately” (P6). 

Five participants mentioned explicitly that they do not use ML 
interfaces because they are not available in the environments where 
they work, and that “people would want to use easier tools.” (P3) For 
example, “many data scientists want to explore their data in notebooks” 
(P2) without having to open a separate system. Additionally, since 
data and models update frequently, one participant wanted to “start 
a job with checkboxes and buttons” (P6) and produce a self-updating 
web UI that they would not have to manually author. 

Lastly, the teams we talked to work with myriad data types, such 
as video, 3D point cloud, tabular, image, and audio data, and desired 
bespoke visualizations supporting their analysis needs. One par-
ticipant mentioned running and visualizing specifc data analyses, 
and “would want to specify algorithms because our problems are very 
specialized.” (P8) However, current data science tools often only 
provide visualizations for a limited set of data types and models. 

Lack of communication between stakeholders. As a consequence 
of limited, isolated interfaces, participants described various chal-
lenges for communicating and sharing insights. Since diferent 
stakeholders prefer diferent environments, such as code-based 
notebooks or standalone dashboards, it can be challenging to share 

insights with others. In addition to sharable interfaces, participants 
also wanted cross-platform support for themselves, as one partici-
pant put it, “I would like both an environment for experimentation 
and always there reliable visualizations.” (P2) 

It can also be difcult to transfer visualizations and fndings 
between platforms that diferent stakeholders work with. One par-
ticipant lamented that “I am often not invited to the table until things 
go wrong,” (P4) and in some teams “designers often times don’t have 
access to data and model results.” (P3) In turn, decisions about ML 
systems are made without all team members having a shared under-
standing of the current state and limitations of the project. Despite 
these current limitations, participants thought that “fostering a 
culture of sharing insights would be great.” (P3) 

4 DESIGN GOALS 
Based on the challenges we identifed in the formative interviews, 
we found that a successful framework for ML interfaces must fulfll 
the following: 
Enable data-driven ML interfaces. ML interfaces are often dis-
connected from an ML system’s backing data and model outputs [17, 
46]. ML practitioners should be able to create visualizations that 
are up-to-date and refect an ML systems’ current state. 
Support task-specifc visualizations. Specialized visualizations 
are often needed to make sense of the unstructured data and deep 
learning models increasingly used in machine learning [51, 59]. ML 
interfaces should support these task-specifc visualization needs. 
Provide interactive exploration tools. Static ML interfaces only 
show a fxed subset of the possible analyses stakeholders may 
need [38]. Interactive visualizations let diferent stakeholders dis-
cover and validate the patterns most relevant to their goals. 
Make components reusable. Diferent stakeholders explore ML 
systems in diferent environments, such as computational note-
books and web-based UIs. ML interfaces should be available across 
environments and reusable for diferent domains and tasks. 

5 SYMPHONY: A FRAMEWORK FOR 
COMPOSING INTERACTIVE INTERFACES 
FOR MACHINE LEARNING 

Based on these design goals we built Symphony, a framework for 
composing ML interfaces from interactive visualization compo-
nents. ML practitioners can explore their data and models using 
Symphony components in a computational notebook and then com-
bine and transform them into web-based UIs. Symphony consists of 
three primary features: modular components (Section 5.1), environ-
ment wrappers (Section 5.2), and interaction tools (Section 5.3). In 
the following, we describe the specifc design and implementation 
choices we made to support these goals. 

5.1 Modular Components 
The building blocks of Symphony are independent, modular com-
ponents designed for task-specifc visualizations (Figure 3, right). 
A Symphony component is a JavaScript module that renders a web-
based visualization. We use the Svelte1 web framework as the base 
1https://svelte.dev 
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Figure 3: The technical overview of the Symphony framework. A dataset and fles are passed into the Symphony wrapper for 
a particular platform. The wrapper holds the shared state which is reactively updated and modifed either by standardized 
interaction tools or components themselves. 

of Symphony components, but visualizations can be written using 
any JavaScript code or library. JavaScript has a rich ecosystem of 
libraries and APIs for creating interactive visualizations, like D3 and 
Three.JS, which can be used to create Symphony components. This 
fexibility is important for visualizing unstructured ML datasets, 
something that is not supported by common charting libraries like 
Matplotlib [25] or Altair [58]. 

Each Symphony component is passed three parameters: a meta-
data table, derived state variables like grouped tables, and references 
to raw data instances like images. The metadata table contains a 
row for each instance from which a set of state variables, such 
as fltered and grouped tables are derived (state variables are de-
scribed in detail in Section 5.3). Components are also passed a URL 
from which to fetch raw data samples such as images or audio 
fles. Symphony controls these three parameters, synchronizing and 
reactively updating them across components. 

New components can be created using a cookiecutter template 
that generates all the boilerplate code needed to integrate com-
ponents with Symphony. In the cookiecutter code, a component 
developer modifes the front-end JavaScript to create their custom 
interactive visualization. They can make use of the parameters pro-
vided by Symphony to base their visualization on the data provided 
by a ML practitioner. In the following Subsection we show how 
these modular, reactive components can then be composed by a 
Symphony wrapper to be used across diferent platforms. 

5.2 Platform Wrappers 
The primary goal of using self-contained components is to com-
pose and share them as fexible interfaces across diferent platforms. 
This is done using Symphony’s next main feature, wrappers, which 
connect components with a particular backing platform. These 
wrappers have two primary functions - frst, passing data from a 
platform to Symphony in the correct format, and second, rendering 
Symphony components in the platform’s UI. To support both ex-
ploring and sharing ML interfaces, we implemented wrappers for 
the two platforms most requested in our formative study, Jupyter 
notebooks and web UIs. These platforms are also representative 
of the two environments we found to be most used by ML practi-
tioners: programming environments for exploratory analysis and 
web-based UI interfaces for sharing insights. 

The Python wrapper bundles Symphony components as pack-
ages which can be published to a package index like PyPI for use 
in notebooks and Python scripts. To make Symphony interfaces 
available in Jupyter notebooks, Symphony’s Python wrapper also 
makes each component an ipywidget [32]. The ipywidgets API 
renders web-based widgets in the Jupyter notebook UI and syn-
chronizes its variables with the Python kernel. Data tables like 
Pandas DataFrames or Apache Arrow tables, along with an end-
point for raw instance fles, can be passed to Symphony’s Python 
wrapper to connect components to the data. 
# Using Symphony in Python (e.g. a notebook)
import pandas as pd
from symphony import Symphony

# Import three Symphony components
from symphony_summary import SymphonySummary
from symphony_list import SymphonyList
from symphony_duplicates import SymphonyDuplicates

# Load data
IMAGE_PATH = 'images/cifar/'
metadata_table = pd.read_parquet('table.parquet')

# Initialize Symphony
symph = Symphony(metadata_table, files_path=IMAGE_PATH)

# Use Symphony components
symph.widget(SymphonySummary)
symph.widget(SymphonyList)
symph.widget(SymphonyDuplicates)

The second wrapper we implemented is for standalone, web-
based dashboards. To support this, each Symphony component 
overrides an export function which is used by Symphony to trans-
form selected visualization components from Python code into 
web-based UIs. Components can be confgured before export to be 
placed on diferent subpages and arranged within these pages to ft 
particular use cases, as shown in Figure 5. These dashboards can 
be authored in programming environments and then exported as a 
statically hosted websites. The wrapper for web-based UIs provides 
an HTML fle which imports components as independent JavaScript 
(ES6) modules. Since Symphony components are compiled to pure 
JavaScript fles, the standalone dashboard does not need a dedicated 
backend and can be hosted on a static fle server. 

https://Three.JS


Symphony CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

A

B

C

D

Figure 4: A list component looking at audio samples from the ESC-50 environmental noise classifcation dataset. The toolbar 
on the right has UI elements for the diferent interactions tools available in Symphony. The user (A) has increased the number 
of instances shown per page, and then (B) fltered to see only car horn noises. They then (C) grouped by the “take” feature, 
and (D) selected a set of interesting instances. In a notebook a user can also set these parameters from code. 

# Compose a Symphony web dashboard
symph.widget(SymphonySummary, page="Overview")
symph.widget(SymphonyList, page="Overview", width="M")
symph.widget(SymphonyDuplicates, page="Data Analysis",

width="M", height="L")

# Export Symphony as a standalone web dashboard
symph.export('./standalone', name="Cifar 10")

# Run the Symphony dashboard in a web browser
symph.serve_static('./standalone')

New wrappers can be written to include Symphony components 
in other platforms. For example, we began to explore how we can 
enable users without programming experience to create Symphony 
UIs using a drag-and-drop dashboard builder. We have also experi-
mented with integrating Symphony components in other interactive 
programming environments like Streamlit [31] or Glinda [14]. 

5.3 Interactive Exploration Tools 
The fnal key feature of Symphony is a set of tools for interacting 
with and exploring data. Each component has the same interaction 
tools, and changes are reactively synchronized between compo-
nents both in Jupyter notebooks and in web-based UIs. For the 
web-based UI, state changes are also saved in the URL, allowing 
stakeholders to share specifc fndings. Symphony’s interaction 
tools were derived both from common interactions described by 
participants in the formative study and fndings from visualization 
research [2, 67]. We included a subset of tools that we found to 
be important for the specifc components we implemented. These 
tools include data fltering, grouping, and instance selection. Addi-
tional interaction tools can be added to Symphony by updating the 
main Symphony package and platform wrappers with the new tool, 
which is then available on diferent platforms and synchronized 

across components. New interaction tools can then be accessed and 
modifed by individual Symphony components. 

Users have three ways of using Symphony’s interaction tools: 
through a UI toolbar, Symphony components themselves, or code. 
The UI toolbar (Figure 4, right) is available both in interactive pro-
gramming environments (Figure 2, left) and the web-based dash-
boards (Figure2, right). We implemented this toolbar as another 
Symphony component, which is shown alongside each component 
in Jupyter notebooks for convenient access, and displayed as a 
consistent sidebar for the web-based dashboard. Apart from the 
UI toolbar, components not only have direct access to the global 
Symphony state but can also modify it based on user interaction. For 
example, individual data samples can be selected from whichever 
component they are viewed in. Thus, component developers can 
add custom controls to manipulate Symphony’s state. Lastly, ML 
practitioners may want to make more complex data transformations 
that cannot be mapped to UI components. For such use cases, Sym-
phony’s state can also be directly be manipulated within Python. 
Whether in a notebook or Python script, users can set and retrieve 
any of the state variables. In Jupyter notebooks, this allows for fuid 
interactions between UI and code in the style of Kery et al. [36]. Ad-
ditionally, Symphony’s state can be extracted from the web-based 
UI and loaded into Python-based notebooks, making fndings from 
shared Symphony dashboards available to the ML practitioners in 
code-based environments. 
# Get selected items in GUI as a Python list
selected_items = symph.get_selected()

# Set selected items in GUI from a Python list
symph.set_selected(python_list)
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A Dataset Overview

B Data Cleaning

C Model Analysis

Figure 5: Symphony supports a diverse range of ML tasks. 
Here we show examples of three distinct dashboards: (A) A 
dataset overview with a textual description of the data’s ori-
gin, distribution plots, and example data instances. ML prac-
titioner can use this report to understand what a dataset con-
tains and what tasks they can use it for. (B) A data validation 
dashboard to help ML practitioners track issues during data 
collection, such as duplicate or out-of-distribution instances. 
(C) A model analysis dashboard for exploring the perfor-
mance of an ML system. Users can fnd groups of incorrectly 
classifed instances in the embedding and drill down into 
fairness metrics with respect to diferent data subgroups. 

6 PARTICIPATORY DESIGN SESSIONS 
With the initial Symphony framework, we conducted a series of 
participatory design sessions to understand the specifc needs of 
ML teams and design and develop an initial set of Symphony compo-
nents. We conducted 10 sessions where each session had between 
1 and 7 people, with a total of 31 people across all sessions. We 
recruited and contacted teams via internal mailing lists, and the 
sessions lasted between 30 minutes and an hour. The frst half of 
each session consisted of a demonstration of a Symphony prototype 
based on a mock dataset. In the second half of each session, we 
asked participants to refect on and describe their own work and 
asked them about what additional features would be necessary to 
integrate Symphony into their workfows. 

6.1 Expanding Symphony’s Technical 
Capabilities 

From these participatory design sessions, we extracted a set of ad-
ditional needs and wants for Symphony. Rather than the high-level 
goals presented in Section 4, the fndings from the participatory 
design sessions are more technical and tied to the implementation 
of Symphony. 

While displaying images directly in computational notebook 
components was greatly appreciated by the participants working in 
computer vision, the teams working in diferent domains expressed 
interest in previewing and visualizing other data types. To demon-
strate Symphony’s ability to support other unstructured data types, 
we made the display of data sample modular and added audio data 
as an additional supported data type. To visualize other types of 
data, a developer just has to implement a rendering function for 
the new data which all components can use. 

Some teams work with large models trained on big data, which 
originally exceeded Symphony’s ability to scale and led to long 
load times. In response, we implemented pagination for all the 
components that display raw data. Depending on the data type, the 
number of samples per page can be adjusted, allowing Symphony 
to scale to millions of data samples. For even larger datasets, where 
a ML practitioner wants to load and visualize hundreds of millions 
of data points, the browser memory becomes a limiting factor for 
holding the backing metadata table. For these truly large datasets, 
we suggest users select representative subsets for detailed analysis; 
however, scaling beyond millions of data instances is described in 
Figure 8. 

Interactive exploration is a powerful analysis technique when de-
veloping ML systems. However, for ML projects that contain many 
datasets, compounded when data or models are rapidly chang-
ing, participants expressed interest in automatically generating 
shareable dashboards and reports to support streaming data and 
automatic model retraining. Apart from providing Symphony as 
an authoring tool in computational notebooks, ML practitioners 
can also write Python scripts that consume ML data and model 
outputs, assemble a selection of components, and create and export 
a standalone Symphony web UI. 
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Candidate Group 1

Candidate Group 2

F DuplicatesD 3D Path E Map

G Familiarity
Least Familiar Instances

H Projection I Confusion Matrix J Hierarchical Conf. Matrix K FairVis

False Positive Rate

B List C SummaryA Markdown
Data Collection

Labelling Process

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed 
do eiusmod tempor incididunt ut 
labore et dolore magna aliqua. 

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed. 

Figure 6: The Symphony components we implemented as a result of the participatory design sessions. (A) Markdown text for 
data and model details. (B) A paginated list of instances. (C) Distribution charts for metadata columns. (D) 3D path visualiza-
tions for sensor and inertial measurement unit (IMU) data. (E) Map visualizations for geographic data. (F) Potential duplicate 
instances. (G) Familiar and unfamiliar instances in a dataset. (H) 2D projection for model embeddings. (I) Binary confusion 
matrix. (J) Confusion matrix for hierarchical classifcation models. (K) Fairness analyses of intersectional subgroups. 

6.2 Implemented Symphony Components for 
Data and Model Analysis 

Informed by the feedback and needs expressed in the participatory 
design sessions, we implemented an initial set of 11 components 
shown in Figure 6. These initial components cover various data and 
model analysis tasks, from fnding potential duplicates in a dataset 
to auditing models for biases. We created all components using the 
component cookiecutter template described in Figure 5.1. 

The frst set of components created cover overview descriptions 
and summaries of an ML dataset. The markdown component (A) lets 
Symphony replicate existing documentation methods like Datasheets 
and Model Cards by writing rich text content. Users can follow ex-
isting guidelines to document essential information about a dataset 
or model often overlooked or not described. The list component (B) 
shows a paginated list of data instances, with support for a variety 
of data types like images and audio. Multiple ML practitioners re-
quested this feature, since they currently use fle explorers outside 
of a notebook or one-of functions to look at individual instances. 
Distribution charts and counts in the summary component (C) pro-
vide a high-level overview of data and can help detect potential 
biases or skews in a dataset. Lastly, we developed two additional 
components, a 3D path component (D) and map component (E), for 
exploring specifc data types like health sensor data and geographic 
distributions. 

We also implemented a set of components for more complex 
analysis of unstructured datasets that were important to multiple 
teams. We frst compute a model embedding from a deep learning 
model on the provided data instances, from which diferent metrics 
are calculated. For the frst of these components we use a nearest 
neighbors algorithm based on cosine distance in embedding space 
to fnd potential groups of duplicate instances (F), which could 
impact training performance or the validity of test set accuracy. In 
the next component, we ft a Mixture of Gaussians model on the 
embeddings to calculate a familiarity score for each data point. We 
fnd the most and least familiar instances in a dataset (G) by sorting 

by familiarity score. Instances with low familiarity scores can be 
outliers or mislabeled instances, while high familiarity instances 
can show over-represented types of data. Finally, there is a 2D 
projection embedding (H) that shows a dimensionality reduced 
representation of the embeddings. The embedding can be used to 
fnd various interesting data and model patterns and is especially 
useful when used to explore insights found in other components. 

The last set of components we implemented focus on analyzing 
and debugging ML models. The classic confusion matrix component 
(I) is important for initial debugging of classifcation models. Other 
classifcation tasks that use data with hierarchical or multi-label 
data can be explored using a hierarchical confusion matrix com-
ponent (J). We primarily implemented this component for a team 
in the participatory design sessions that was working on hierar-
chical classifcation models. Lastly, we built a set of visualizations 
for analyzing model performance across intersectional subgroups 
(G) based on a system by Cabrera et al. [9]. The visualization can 
help users audit their models for biases, something which multiple 
product teams were interested in. 

We used three diferent methods for implementing the above 
Symphony components. Symphony components are Svelte and 
JavaScript (JS) fles, so authors can create new visualizations with 
their preferred front-end libraries. For components without exist-
ing libraries, we used JavaScript in combination with visualization 
packages such as Vega and D3. Symphony can also use of-the-shelf 
JS libraries, for example, we used REGL Scatterplot [42], a WebGL 
library, to create the projection component. Lastly, since Symphony 
components are made with Svelte, we can also directly use Svelte 
components, which is what we did with the Hierarchical Confusion 
Matrix. These diferent strategies for creating components provide 
the fexibility to implement custom visualizations while also allow-
ing developers to use of-the-shelf libraries and visualizations. 
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7 CASE STUDIES ON DEPLOYED ML SYSTEMS 
Lastly, we evaluated Symphony with ML practitioners and stake-
holders working on real-world ML products. We worked with three 
ML teams at Apple, drawn from the participatory design sessions, 
to integrate Symphony with their data and ML pipelines. The teams 
focus on diferent machine learning tasks, namely dataset creation 
and labeling, accessibility research, and ML education. To under-
stand the afordances and limitations of Symphony, we conducted 
think-aloud studies lasting 60 minutes where a member of each 
team used Symphony to explore a Jupyter notebook and create a 
web-based dashboard for their data and model. While feld studies 
like ours excel at capturing how participants actually work, this 
data has to be collected opportunistically. We believe these case 
studies capture the target audience of Symphony, cross-functional 
teams working on modern ML models trained on unstructured data, 
but may have some insights specifc to organizational workfows. 

Before the study, we sent a member of each team, the main par-
ticipant, a Jupyter notebook that imported their data and displayed 
a set of Symphony components applicable to their domain and task. 
The study was split into three main sections. For the frst third of 
the study, we asked the team to think aloud while the main partici-
pant used the notebook and Symphony components to explore the 
data and model freely. In the second part of the study, we asked 
the main participant to export the Symphony components (using a 
command in the notebook) to a standalone dashboard and continue 
exploring in the exported web UI. For the fnal part of the study, 
we asked the team for feedback on Symphony and discussed what 
types of use cases or limitations they found. 

7.1 Case Study I: Validating and Sharing Data 
Patterns on a Dataset Creation Team 

For the frst case study, we worked with a team that assembles and 
labels large machine learning datasets. Their datasets are composed 
of labeled images and videos which they publish to an internal 
data repository. The team was interested in using Symphony in two 
ways, frst, using it during dataset creation to detect errors in the 
data and labels, and second, as a reporting tool to give consumers 
of the dataset details about the data. Given these requirements, we 
loaded Symphony with the list (Figure 6 (B)), summary (Figure 6 
(C)), duplicates (Figure 6 (F)), familiarity (Figure 6 (G)), projection 
(Figure 6 (H)), and map (Figure 6 (E)) components. 

The main participant started in the notebook and used multiple 
components and interaction tools in concert to spot unexpected 
patterns in their data. They made extensive use of Symphony’s 
toolbar to combine flters and select subsets of data in which they 
were interested. When using the notebook, they commented that 
“there are a lot of neat things here, frst, the flter carried over, and it 
is so cool to see the data samples and metadata within the notebook.” 
The synchronized, reactive state let them validate insights from the 
fltered summary charts with the actual raw instance previews in 
the list view. Next, the main participant moved on to the duplicates 
and familiarity components, where they found a couple of labeling 
errors that they suspected existed in their dataset but had not been 
able to validate previously. After transitioning to the standalone 
dashboard, the frst component they looked at was the projection 
visualization. They used the projection to fnd a closely clustered 

group of instances where a few highlighted points that the model 
had misclassifed. In the standalone dashboard, they also dubbed the 
map visualization “very useful” , especially when sharing reports 
of their data collection eforts with managers or policymakers. 

Overall, the team found “a lot of value here” when using Sym-
phony. They mentioned that the workfow they would most pre-
fer would be automatically generating shareable reports for every 
dataset they published: “programmatic generation and live visu-
alizations are awesome, being able to pop these charts into all our 
READMEs would be amazing.” They saw the standalone dashboard 
that they created with Symphony as a “great starting point” for 
analyzing their datasets, and that they could see people use the 
notebooks for more detailed analysis: “if people want to drill down 
more, and get exact specifc access, summon the notebook.” Being 
able to create diferent interfaces with subsets of visualization com-
ponents was important for them as well, as diferent audiences 
have diferent needs and they “do not want customers to do the data 
cleanup” for them. 

The team also identifed usability issues and limitations in Sym-
phony. When initially using the projection component, the main 
participant was not sure what it showed and thought that “this 
component would need some introduction, as it has complex controls.” 
They also requested additional components, such as heatmaps and 
other 2D graphs, to do a more detailed analysis of distributions. 
Lastly, the main limitation for directly using Symphony was not 
being able to attach the raw data fles to a Symphony interface as 
their data samples are often not hosted and too large to duplicate. 

7.2 Case Study II: Debugging Training Data on 
an Accessibility Team 

In the second case study, we worked with a team that uses ML 
to make software applications more accessible. They have a large 
dataset of icon screenshots for which we assembled a similar set of 
components to the dataset creation team. We included the summary 
(Figure 6 (F)), duplicates (Figure 6 (A)), familiarity (Figure 6 (B), and 
projection (Figure 6 (H)) components . 

When exploring the notebook, the participant found the du-
plicates, familiarity, and scatterplot components to be the most 
interesting. Since they use an automated approach to collect their 
data, the participant assumed that there were likely duplicates in 
the dataset but had protocols to ensure they would not be across 
the training and testing set. Using the duplicates component, they 
confrmed that a signifcant number of icons were duplicates, but 
when they used the grouping interaction to split the data by test-
ing and training they found that a signifcant number of instances 
were duplicated across the two datasets. The combination of the 
duplicates visualization and grouping interaction tool helped them 
discover that they “were cheating learning on samples we test for.” 
The participant identifed the problematic duplicates and selected 
them in the notebook to remove from the test set with a Python 
command later. Next, the participant explored the familiarity com-
ponent and found a large number of similar grey icons, based on 
which they wondered if “the model might overft on these samples.” 
Finally, using the projection visualization, they found a dispersed 
cluster of instances with diferent labels. When they selected the 
group, they found that the instances were all PNG images in the 
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test set, while the training set only contained JPEG images. The par-
ticipant then mentioned they “want to test their model specifcally 
on PNG images to assess how the model generalized.” 

Overall, the participant mentioned that they would “want to 
try and use this to share insights within the team.” Additionally, 
they found the notebook-based visualizations personally useful 
to “look into the data,” which they had previously done manually 
using a fle explorer outside of the notebook. They mentioned that 
they would likely use a computational notebook to explore data, 
and only use the standalone dashboards to share insights or when 
they wanted more visualization space. The main feature the team 
wanted was to combine data and model fndings to understand the 
impact of data changes: “it would be super helpful to also add models 
and combine model analysis with existing components.” While this 
analysis is possible with existing model analysis components, future 
components could specifcally combine data and model information. 

7.3 Case Study III: Promoting Data Exploration 
for ML Novices on an Education Team 

For the fnal case study, we collaborated with a team focused on ML 
education. They teach courses about ML principles and techniques 
to engineers, and also teach their audience about data and model 
analysis tools. They sent us a list of datasets they commonly explore 
with students from which we selected two representative datasets, 
one audio dataset for data analysis and one image dataset for model 
analysis. For the audio dataset we used the same components as in 
the previous evaluation. To support model analysis for the image 
dataset, we used the summary (Figure 6 (F)), hierarchical confusion 
matrix (Figure 6 (D)), FairVis (Figure 6 (K)), and projection (Figure 6 
(H)) components. 

The team was interested in how they could use separate com-
ponents in concert. They used the cross-fltering and grouping 
heavily to combine, for example, the projection visualization with 
the summary component to spot misclassifed samples. They also 
used the confusion matrix visualization in combination with our 
fltering tool. For example, they fltered out the correctly classifed 
data samples from the metadata table to highlight misclassifca-
tions and described the resulting confusion matrix as “a fantastic 
graphic.” They were also intrigued by being able to display a list 
of data samples in notebooks or a standalone dashboard, as they 
“constantly tell [their] students to look at a lot of examples” but are 
currently limited to seeing one or two instance at a time and “just 
graph things using matplotlib or pillow.” 

Overall, the team found Symphony to be a valuable tool for ML 
tasks and thought it could play a part in one of their lessons, as 
“promoting looking at data is extremely important.” They remarked 
that “in Python, its very easy to ignore the data, anything you can 
do to bring the data to the forefront is great.” Thus, they wanted 
to use Symphony during their courses in multiple ways, namely 
using the “notebook for generating interfaces, then exporting them 
to teach a group such that they can open the website and everyone 
can explore on their own or follow my instructions.” This way, they 
hoped that “[students] can play with it and experiment talk about 
how to communicate results for ML models.” They also particularly 
liked the option to assemble visualizations, for example when their 

students learn how to “communicate fndings to executives” and 
“graphing the relevant, and hiding the irrelevant.” 

As for limitations, they wanted to be able to unlink the state 
of diferent components to experiment with them independently. 
They also mentioned that they would like to load more data types 
than just the currently implemented audio, images, and tabular data, 
namely text data. While this is not possible right now, Symphony 
could be extended to more data types by augmenting the data 
sample adapter we provide. 

8 LIMITATIONS AND FUTURE WORK 
In both the pilot studies and case studies, we found ways in which 
Symphony could be further improved. 

Authoring components. Symphony components are written using 
JavaScript code and web-based visualization libraries. Programming 
these visualizations requires expertise in web development and 
visualization, which limits who can create new components. Future 
work could explore ways to lower the barrier to authoring new 
visualization components. Potential strategies to make component 
creation more accessible include using grammars for interactive 
graphics, such as Vega [52], or UI-based visualization builders like 
Tableau [43]. Additional research would be needed to make these 
tools more expressive for unstructured data and ML models. 

Scaling past millions of data points. Symphony currently loads 
the backing metadata table used for Symphony into web browser 
memory. This scales to tens of millions of data points, which, while 
sufcient for many modern ML tasks, does not cover all domains. In 
our design sessions, we spoke to teams with terabyte-scale metadata 
tables that do not ft in browser memory. Future work could explore 
ways to support this scale while still providing direct interactivity 
with the underlying data and models. Using an external API or 
backend for data processing combined with more efcient data 
queries could support massive data but would limit where the web-
based UI could be used. 

Beyond conventional data science platforms. In this work, we im-
plemented Symphony wrappers for computational notebooks, pro-
gramming environments, and web-based dashboards. While these 
platforms cover a signifcant portion of where ML work happens, 
future work could explore how Symphony could be incorporated 
into other platforms, especially those which are currently isolated 
from data science work. For example, Symphony interfaces could 
be included in messaging services, documents, presentations, or 
issue trackers to further bring the benefts of Symphony to more 
people. New design studies could be conducted to understand how 
users in common communication platforms like instant messaging 
would beneft from and use Symphony components. 

Guided usage of Symphony. ML practitioners can use Symphony 
for a wide array of ML analyses, from dataset debugging to auditing 
models for bias. This gamut of uses stands in contrast to more 
prescriptive approaches like Datsheets [17], Model Cards [46], and 
checklists [44] which defne an ordered list of what an ML interface 
should show. While ML practitioners can use Symphony for more 
types of analyses, it does not provide any guidance to users about 
which components might be the most adequate or useful for a given 
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task. Future work could look at combining Symphonys open-ended, 
exploratory approach with more prescriptive guidance. 

Scope of case study fndings. Lastly, our case studies were con-
ducted with ML practitioners at a single institution that works 
on large ML models trained on unstructured data, often using 
notebooks and visualization dashboards. While we believe these 
tools and ML development practices exist widely in industry and 
academia, we recognize some of our fndings may not generalize 
to other organizations or types of users such as machine learning 
enthusiasts, hobbyists, or small teams. Further studies could explore 
Symphony’s afordances and drawbacks in these distinct settings. 

9 DISCUSSION 
Symphony provides a common substrate for ML interfaces that 
enables both exploratory analysis and sharable ML interfaces. By 
meeting diferent users where they work, Symphony empowers 
each member of an ML team to have direct access and knowledge 
of the data and models powering an AI product. 

While the case studies described scenarios where ML practition-
ers work in programming environments and then transition to 
web-based UIs, we also observed in our studies that ML practition-
ers can beneft from going the opposite direction: transitioning from 
a web-based UI back to a programming environment. When a user 
fnds an interesting insight in a standalone Symphony dashboard, 
they can copy their fndings to the programming environments 
along with state variables like flters and groups. Existing analysis 
tooling often sufers from an “expressiveness clif”, where only a 
fxed set of visualizations and data manipulations is available. Sym-
phony allows users to return to programming environments where 
they have more fexible analysis tools. 

ML practitioners’ desire to use Symphony for exploration could 
also encourage them to share their insights more frequently. If 
ML practitioners are using a set of Symphony components for ex-
ploratory analysis in a notebook, no additional work is needed 
for them to export it as a standalone, shareable UI. Participants 
mentioned the ability to programmatically combine components 
as a major beneft, allowing them to go from exploration to an in-
teractive, web-based UI without using a diferent tool. Additionally, 
Symphony interfaces can be redeployed continuously whenever the 
data and model are updated, supporting ML tasks with streaming 
data or automatic model retraining. 

By integrating with existing data science platforms, Symphony 
could also encourage broader use of task-specifc ML visualizations. 
ML visualization systems are often implemented as one-of web 
dashboards [1, 9, 10, 22, 39, 64] that require users to wrangle and 
export their data into systems separate from where they do ML 
development. Symphony includes task-specifc visualization com-
ponents directly in data since platforms like Jupyter notebooks, 
and the components can consume data from standard data APIs 
like Pandas Data Frames. In turn, implementing ML visualizations 
as independent components in a framework like Symphony could 
increase their use and longevity. 

Beyond helping individuals understand ML systems, Symphony 
is intended to foster a shared organizational understanding [69] 
between stakeholders on an ML team. Symphony interfaces act 

as boundary objects for large, cross-functional ML teams. Bound-
ary objects are artifacts that are “both plastic enough to adapt to 
local needs and the constraints of the several parties employing them, 
yet robust enough to maintain a common identity across sites” [56]. 
Symphony can serve as a boundary object for ML teams, providing 
interfaces that adapt to the diferent needs of stakeholders. At the 
same time, “The creation and management of boundary objects is 
a key process in developing and maintaining coherence across in-
tersecting social worlds” [56]. Symphony aids in this creation and 
management process, bridging the gap between the intersecting 
worlds of diferent ML stakeholders such as engineers, designers, 
and product managers. 

10 CONCLUSION 
In this work, we designed and implemented Symphony, a frame-
work for composing interactive ML interfaces with data-driven, 
task-specifc visualization components. Symphony’s visualizations 
helped ML teams fnd important issues such as data duplicates and 
model blind spots. Additionally, We found that by providing ML 
interfaces in the data science platforms where ML practitioners 
work, Symphony can encourage ML practitioners to want to use 
and share insights. With data-driven components that diverse stake-
holders across an ML team can use, Symphony fosters a culture of 
shared ML understanding and encourages the creation of accurate, 
responsible, and robust AI products. 
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