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Figure 1: Blue Noise Plots (left) prevent clutter and provide visually more appealing results than frequently used jitter plots (right). Importantly,
Blue Noise Plots are unbiased, in the sense that no data point is ever changed and strictly all points of the sample are presented.

Abstract
We propose Blue Noise Plots, two-dimensional dot plots that depict data points of univariate data sets. While often one-
dimensional strip plots are used to depict such data, one of their main problems is visual clutter which results from overlap. To
reduce this overlap, jitter plots were introduced, whereby an additional, non-encoding plot dimension is introduced, along which
the data point representing dots are randomly perturbed. Unfortunately, this randomness can suggest non-existent clusters, and
often leads to visually unappealing plots, in which overlap might still occur. To overcome these shortcomings, we introduce Blue
Noise Plots where random jitter along the non-encoding plot dimension is replaced by optimizing all dots to keep a minimum
distance in 2D i. e., Blue Noise. We evaluate the effectiveness as well as the aesthetics of Blue Noise Plots through both, a
quantitative and a qualitative user study.

1. Introduction

Consider depicting a univariate data set, e. g., observed ages in a
cohort, on paper. While we could simply report first order statistics,
such as for instance the mean, this would be an oversimplification
in many important cases [Tal07]. Instead, we would like to show all
data points, and thus ask for the optimal way to represent these with
dots in a two-dimensional plot.

A strip plot simply plots data points on a single horizontal axis,
while an observer is free to apply domain knowledge to judge what is
the density, what might be modes or what might be outliers. Recent
efforts, to communicate data to a wider public and not just to experts
have resulted in such plots to be used increasingly in print media,
television and on the web. Strip plots are most effective when the
number of data points is still low enough to be displayed, but high
enough to represent the information. The first row of Fig. 2 shows
examples of strip plots on a univariate toy data set. Unfortunately,
the main disadvantage of using strip plots to depict such data sets, is
clutter which often leads to overdraw. As such, if two dots xi and x j
are closer than what the printer, display or the human visual system
can reliably discern, the advantage is lost, since not all data points
are effectively communicated. For instance, the data set {1,2,4}
results in the same visual representation, as the data set {1,2,2,4,4},

because the individual dots representing the values 2 and 4 would not
be discernible when plotting the second data set, due to overdraw.

Strip

Jitter 

Blue noise 

Dataset A Dataset B
Seed 1 Seed 2 Seed 1 Seed 2

Plot type

Figure 2: Three different plotting approaches (rows) for two dif-
ferent univariate datasets at two different random seeds (columns).
Strip plots always fail to convey the datasets, as they look the same.
Jitter plots, may sometimes fail: dataset B looks like dataset A for
seed 2 while they are different. Our Blue Noise Plot never fails.

As a remedy, jitter plots have been proposed [Cha18, Tuk77],
which introduce an additional, non-encoding dimension, along
which dots are randomly perturbed. For our example, of univariate
data points plotted in two dimensions, this means to simply move
the respective dots vertically by a random amount. The second row
of Fig. 2 shows examples of such jitter plots on the before data
sets. While jitter plots usually reduce the amount of clutter and are
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easy to implement, they have three main drawbacks. First, the intro-
duced randomness leads to gaps and clusters, which might be falsely
perceived as features present in the data set. Second, no minimum
distance between dots is enforced, which in the worst case might
lead to overlap, something we have observed in many real world
examples. Lastly, jitter plots do often look visually unappealing.

By introducing Blue Noise Plots, we provide a solution to the
three main drawbacks of jitter plots. A conceptual comparison is
made in the last row of Fig. 2. Computer graphics has explored
blue noise [Uli88], that is, dot patterns, that are still random, but
without dots getting to close to each other. By proposing a modi-
fied Loyd relaxation algorithm [Llo82], we can extend jitter plots
to become Blue Noise Plots. Importantly, Blue Noise Plots are
unbiased, in the sense that we make no assumption on how data
points are represented, no data point is ever changed and strictly
all data points of a data set are presented, setting it apart from
other methods [BS04, BW08, KHD∗10, MG13, MPOW17], that ei-
ther re-sample or change the way data points are presented.

To investigate the impact of Blue Noise Plots on task performance
and visual appeal, we have conducted a crowd sourced user study,
whereby the obtained results indicate, that Blue Noise Plots are
beneficial over conventional jitter plots. Furthermore, we have per-
formed a qualitative study assessing the visual appeal of Blue Noise
Plots, and discuss objective quality measures.

2. Previous Work

Our work addresses the visualization problem of plotting univariate
data sets using the computer graphics methodology of blue noise,
both of which we will review now.

Visualizing univariate data sets. To visualize univariate data sets,
several different plot types exist. We distinguish between direct
and aggregated visualizations. While direct methods allow for the
depiction of the individual data points forming the data set, aggre-
gated methods only communicate the data set per se, often in an
approximate manner. Several well known plots fall into the later
category, such as for instance histograms [Pea94], box plots [Spe69],
and violin plots [HN98]. Nevertheless, this category is not in the
focus of our work, and we instead aim for direct techniques, which
explicitly convey the existing data points. One of these techniques,
that is frequently used are strip plots [Cle85], where data points are
represented as symbols, usually dots or circles. As stated above,
these symbols are simply plotted all along the same dimension, inde-
pendent of the occurring densities. While strip plots are an intuitive
way to convey univariate data sets in a direct manner, they come with
severe limitations, as they suffer from overdraw in dense regions.
As a consequence, they might introduce distortion, as the maximum
density to be communicated is limited by this overdraw. There are
two main approaches to deal with the problem of overdraw. The
size and or alpha blending value of the representing symbols can
be altered, or data points can be transformed such that overdraw is
reduced. While naturally, these approaches can be combined, we
solely focus on transformation approaches in this paper.

Among the techniques applying transformations, the stacked dot
plot is the most basic, as it simply stacks the shown dots, which effec-
tively resembles a bar chart for non-continuous data [Cle93, Wil99].

For continuous data sets, more elaborate packing schemes need
to be employed, in order to obtain an acceptable layout. So-called
beeswarm plots exploit such packing which enables them to obtain
a stacked and dense representation without the need for binning, but
their simple construction leads to false features and clustering.

In contrast to the stacked representations described above, jitter
plots randomly distribute all points in a given range along an ad-
ditional, non-encoding dimension [Tuk77]. Thus, it also becomes
possible to reduce the amount of overdraw, to a degree dependent
on the plot size and the occurring densities. Jittering originally goes
back to Chamber et al. [Cha18], while Tukey and Tukey additionally
exploit constraints [TT90].

Recently, several visualization approaches have been proposed,
which deal with the shortcomings of dot plots in general. Bachthaler
and Weiskopf have introduced continuous scatter plots, which sac-
rifice the discrete nature of scatter plots, in order obtain a dense
visualization [BW08]. Mayorga and Gleicher go further by automat-
ically grouping some dots, while keeping others [MG13], which is
combined with interactive exploration. Along a similar line, Bertini
and Santucci introduce non-uniform samplings in order to com-
municate density in 2D scatter plots [BS04]. Keim et al. introduce
generalized scatter plots, where the dot locations are modified in
order to reduce overlap [KHD∗10], which in contrast to our ap-
proach, this adds bias to the actual data values. Micallef present
an optimization approach for the perceptual optimization of scatter
plots [MPOW17]. By exploiting task-dependent cost functions, they
are able to obtain satisfying scatter plot designs, which compete
with those crafted by humans. Yuan et al.[YXX∗20] and Rapp et
al. [RPD20] also address the problem of overdraw in scatter plots
where they select a subset of data points from a large data set such
that the resulting patterns follows the density, yet has blue noise.
Our work does not select subsets, but shows all data points, and
introduce an additional, non-encoding dimension so that dots can
become blue noise in the first place.

It shall be noted, that some form of box plots also communicate
individual data points, e.g., when they are outliers, and thus can be
considered as a combination of aggregated and direct visualization.
Many of the contributions made in this paper, can also be applied in
this context.

Blue noise. Dot patterns are often described in terms of their ex-
pected power spectrum profile. Patterns exhibiting mostly high-
frequency content in their power spectrum are characterized as
blue noise. The resulting spatial distribution of dots respect some
minimum distance giving perceptually pleasing patterns [Yel83].
Consequently, blue noise has been widely adopted in many com-
puter graphics applications including halftoning [Uli88], stip-
pling [Sec02], artistic packing [RRS13], anti-aliasing [DW85] and
variance reduction for Monte Carlo rendering [SOA∗19]. Typically,
such methods are free to place dots in whatever arrangement, only
their correlation and in some cases an importance function is rele-
vant. Also the dot count is typically not fixed strictly. An exception
is the work by Reinert et al. [RRS13], who initialize Lloyd relax-
ation with coordinates that are correlated with a feature vector of
a specific set of elements. In comparison to our approach, this is
biased, i. e., dots are free to change position or order, defying the
purpose of a jitter plot altogether, which is to link individual dots to
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Algorithm 1 Lloyd relaxation
1: P← uniform()
2: repeat
3: V = voronoi(P)
4: for pi ∈ P do
5: pi← 0
6: for q j ∈Vi do
7: pi← pi +q j/|Vi|
8: end for
9: end for

10:
11: until converged
12: plot(P)

+

Algorithm 2 Jitter Plots
1: P← stack(X ,uniform())
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12: plot(P)

=

Algorithm 3 Blue Noise Plots
1: P← stack(X ,uniform())
2: repeat
3: V = voronoi(P)
4: for pi ∈ P do
5: pi← 0
6: for q j ∈Vi do
7: pi← pi +q j/|Vi|
8: end for
9: end for

10: P← stack(X ,unstack(P,X))
11: until converged
12: plot(P)

Figure 3: Our approach (right) is a combination of Lloyd relaxation (left) and jitter plots (middle) with a data constraint extension. The
function stack(A,B) stacks vector A on top of vector B. The function unstack(A,B) returns the vector A with the dimensions from B removed.

definitive data points. Our work shares similarity with Reinert et al.
[RRSG15] that treat different dimensions in the dot optimization dif-
ferently, but without complying to data points, only optimizing for
different spectra. In this work, we show that dots distributed while
obeying to blue noise provide better data visualizations. Therefore,
we optimize the dot layout using Lloyd relaxation [Llo82] to obtain
a blue noise distribution. However, unlike traditional approaches,
our optimization works by keeping the encoding dimension fixed,
while optimizing the dot positions along the other, non-encoding
dimension. Our optimization runs in higher dimension than the data
and uses a novel distance metric to emphasize the non-encoding
dimension to guide the optimization. We already have mentioned
Hu et al. [HSVK∗19] as a rare example of a visualization paper
that relates to blue noise. Compared to our objective, their task is
easier, as they assume sampling from multiple importance functions
to produce multi-class blue noise, without adhering to ordinality or
coordinates of any data.

3. Blue Noise Plots

We will here give a formal definition of our approach, starting from
in- and output (Sec. 3.1), to a variational formulation with con-
straints (Sec. 3.2) and our implementation to minimize it (Sec. 3.3).
The section concludes with several extensions, such as considering
centrality in a way similar as done by beeswarm plots, automati-
cally choosing the plot height (Sec. 3.4), as well as introducing a
multi-class version (Sec. 3.5).

3.1. Input and Output

Input to our method is a set X = {xi ∈ R} of univariate data points,
where values are assumed to be associated with the horizontal axis.
Output is a set Y = {yi ∈R} of scalar jitter values associated with the
vertical axis. We further write P = {pi = (xi,yi)∈R2} to denote the
combination of data value along the horizontal, encoding dimension,
and jitter value along the vertical non-encoding dimension into a set
of two-dimensional dots.

3.2. Cost Function

Optimization is performed for the set of vertical jitter values Y of
an output Blue Noise Plot, given the univariate input data set X . We
minimize:

argmin
Y

∑
yi∈Y

Eq∼V (pi,P)κ(pi,q). (1)

The distance cost is the sum of the expected value E of the κ-
distance from the i-th output dot pi to all sites q in its Voronoi cell
V (pi,P) in respect to all other dots P.

Uniform metric. For classic Blue Noise Plots, we use

κ(p1,p2) = ||(p1−p2)
T
(

2 0
0 1

)
||1. (2)

Here, the constant diagonal matrix, emphasises the non-encoding
dimension along the vertical direction. We will in Sec. 3.4 introduce
further metrics to realize other variants.

3.3. Optimization

While two-dimensional Lloyd relaxation [Llo82] would minimize
the distance cost, it unfortunately does not adhere to the hard con-
straints. In Lloyd relaxation, after a random initialization (Alg. 1,
Line 1) every dot is iteratively replaced by its Voronoi cell cen-
ter (Alg. 1, Line 2 to 10), followed by a re-computation of the
Voronoi cells (Alg. 1, Line 3) in a expectation-maximization pro-
cedure [DLR77]. Running it directly, will loose the information
present in the data sets, such as trivially done by jitter plots (Alg. 2).

Our main contribution is a solver that extends Lloyd relaxation to
produce dot patterns with even distribution that adhere to the data, as
explained in (Alg. 3). Including the hard constraint is intuitive: use
both dimensions for the relaxation (Alg. 3, Line 1) but never update
the encoding dimension (Alg. 3, Line 10). During optimization, dots
move vertically, with a single degree of freedom per dot, but their
cost computation, including the Voronoi construction, involves 2D.
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Note, how this is different from optimizing only an 2D dot pat-
tern and not involving the 1D information. The information is not
updated, but it is crucial to include it in the distance computation,
such as to satisfy the Lloyd objective in what is finally perceived:
2D space.
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Figure 4: Lloyd relaxation involves Voronoi cells V (blue, grey and
orange areas) computed on the output dot pattern P. These V are
sampled using sites q shown here as rectangles. The optimization
relates every dot pi to all the q j in its cell V (pi,P).

In practice, different options to construct Voronoi regions exist.
We follow the approach from Balzer et. al [BSD09] but without the
capacity constraint. We use 8,192 random 2D points q to discretize
the domain. Note that faster GPU methods exist, that make use of
regular grids [HIKL∗99, LNW∗10].

3.4. Automatic Height

The output dots P are from a domain that typically is wider than high
when using the horizontal axis as the encoding axis, and the verti-
cal axis as the non-encoding dimension. This is, as most datasets
have only a couple of different data points per interval in the data
dimension, compared to the total number of data points. Unfortu-
nately, it might not be obvious how to choose an appropriate height,
both for jitter plots, as well as for Blue Noise Plots for a given
data set. The desired distance between dots is part of the problem
definition. Making recommendations how to choose the distance of
two dots such that they become visually discernible is clearly an
often-encountered visualization challenge, but out-of-scope for this
work. We will assume it to be known and use a distance of two-times
the dot radius in all results we show. We will now show, how to
choose the plot height automatically and optimally.

dmax

o = 25

r

r×d
max ×o = 6

10

h

r×dmax

r 2×d
max ×o = 0.3

Figure 5: Auto-height (see text).

We assume access to
the density function d(x) ∈
R → R+, defined on the
domain of the data distribu-
tion (black in Fig. 5). Typ-
ically, we are only given a
sample of the distribution
not the true density. Hence
the density function needs
to be estimated from the
sample. In some conditions
the density might even be known. In practice we use Kernel Density
Estimation.

Please note, that we do not in general rely on density estimation,
unless the plot height is chosen automatically or we optimize for
centrality (Sec. 3.4.1).

The optimal height depends on the maximal density dmax, the
total number of data points n, and the desired distance r between
dots. The desired distance is chosen by the user (pink in Fig. 5). It
depends on the output medium, whereby a typical choice is to make
it twice the size of a dot, so they become discernable. We note that
at the data coordinate with dmax, we need to “stack” r ·dmax ·n dots
(orange in Fig. 5). Ignoring that optimal packings with efficiency
around 0.9 exist, and assuming a conservative efficiency of 1 instead,
stacking such dots with again radius r needs to be r2 ·dmax ·n = h
(green in Fig. 5).

3.4.1. Centrality

The point density in a Blue Noise Plot might vary. Alternatively,
we can restrict the points to not use all the space available due to
the non-encoding dimension. To this end, for a fixed width (manual
or automatic), we limit dots to move less along the non-encoding
dimension, resembling the appearance of beeswarm plots. We refer
to such a plot as having centrality.

Choosing a varying height is based on the generalization of the
aforementioned automatic height (Sec. 3.4). Instead of choosing a
single height value h, we choose height as a function h(x) of the
data coordinate x itself.

This idea is conveniently realized by changing the metric itself
to be non-uniform. How distant two dots are, is depending on the
density at the coordinate x12 = (x1− x2)/2 between them:

κ(p1,p2) = ||(p1−p2)
T
(

d(x12) 0
0 1

)
||1 (3)

Note, that p1 and p2 are typically close, so even while the function
is not a metric for all pairs, it locally is as the density function is
smooth. In particular it can be chosen arbitrarily smooth by using
a smooth kernel in the density estimation, that, in the limit, corre-
sponds to the constant height.

3.5. Multi-Class

For data sets comprised of different classes, Blue Noise Plots can be
extended to multi-class blue noise [Wei10]. Here, all data points in
one class maximize Eq. 1, as well as all possible unions of all data
points in all classes do. The solver implements this by alternating
between the individual classes and their unions.

4. Results

We present both qualitative and quantitative results of our work.

Single-class. We show results of our, as well as existing approaches
on typical data sets in Fig. 6. We see, that our approach does min-
imize the amount of visual clutter in the form of overlap for all
examples. While this is particularly the case in denser regions, even
in sparser regions (for example in Fig. 6, c) on the right), dots are
more evenly distributed over the available domain, supporting the
perception of individual dots.
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Figure 6: Comparison of three different data sets, each of them
visualized using a traditional jitter plot and our Blue Noise Plot.

Automatic height. As described in Sec. 3.4, we dynamically adapt
the height of the plot, depending on the number of dots and their
distribution. While Fig. 7 shows an example of differently sized
subsets of the geyser data set using a constant height for the
plot, Fig. 8, shows the dynamic adaption. We do so to compromise
between a compact plot and room for the dots to relax and therefore
reduce overlap. If the number of data points gets large, retaining a
fixed distance is only possible at the expense of a high plot.

64
12

8
25

6

1.6 Duration (s) [geyser]2.1 2.6 5.14.1 4.6

Figure 7: Comparison of plots with different numbers of dots. All
plots are drawn using the same height, but with different numbers
of dots. These plots show a random subset of the geyser data set,
visualized using our Blue Noise Plot. Here a) shows 64 dots, b)
shows 128 dots and finally c) shows 256 dots.
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1.6 Duration (s) [geyser]2.1 2.6 4.1

25
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5.14.6

Figure 8: Comparison of adaptive plots with different numbers of
dots. These plots show a random subset of the geyser data set,
visualized using our Blue Noise Plot. Here a) shows 64 dots, b)
shows 128 dots and finally c) shows 256 dots.

Centrality. Fig. 9 shows results where the height is chosen auto-
matically, but varying with the data dimension. Depending on the
reliability of the underlying density estimation, this can be an effec-
tive additional cue. At any rate, adding blue noise improves upon
jitter in readability and aesthetics.
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Figure 9: Optimal constant plot height (first and third) and a vary-
ing height (second and fourth), both for Blue Noise Plots.

Multi-class. Finally, we show an extension to multiple classes of
data points. Here, every input point additionally has a class label.
We use our method to produce a plot that is blue noise for all
classes jointly, as well as for every class on its own. Fig. 10 shows
an example of this where the first two rows show the blue noise
distributed dots of the individual classes. The third row, shows the
final plot, where the first two rows are combined.
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Figure 10: Multi-class Blue Noise Plot for the tips data set with
two classes: dinner and lunch encoded into color. The first two
rows show the individual, the third the combined plot. Please note,
how this is three visualizations of one set, fulfilling all intra- and
inter-class, as well as the data constraints simultaneously.
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Figure 11: Different examples of multi-class data sets, visualized
using jitter plots as well as Blue Noise Plots.

Fig. 11 shows more examples of our Blue Noise Plots, encoding
multiple classes. Here, we can also see that our approach nicely
distributes all the dots, as well as the dots for the individual classes
over the entire domain.

Further Fig. 11 and Fig. 12 show examples of quantized data.
While the blue noise pattern is less prominent in this case, this
shows another strength of our approach. In contrast to the jitter plot,
where the overlap between dots is amplified by this type of data
distribution, our approach does spread out the dots along the vertical
axis.
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Figure 12: Quantized data sets, such as shown here, where not
many x values are shared by a data point, are difficult to optimize
for, but worth addressing: besides being less visually appealing in
many cases, according to our study, jitter plots, due to clutter, are
more difficult to read.

Icons. Inspired by approaches which represent data points with
more complex primitives instead of dots [HHD03, RRS13], we have
used our method to place icons as seen in Fig. 13. Here, every data
point has a unique icon, making relations visible without bias or
clutter.

1 660Wins [Premier League]96 196 476 576

585kAuxiliary Income  [bundestag]21k

Figure 13: Blue Noise Plots can further be used to position extended
primitives, instead of dots, here, little icons depicting soccer clubs
or political parties.

Parameter choice. A typical result of a data set containing 256
data points, as shown in this paper, requires 40 iterations of Lloyd
relaxation, with 8,192 Voronoi samples, resulting in a total time of
six seconds for a naive, non-parallel implementation.

Analysis. We here perform quantiative analysis of our results both
from the graphics perspective using the spectral quality of Blue
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Noise Plot as dot patterns, as well as with overlap measures used to
analyze plots.

To perform spectral analysis, we compute the expected power
spectrum of dots obtained from the geyser dataset. We generate
100 different realizations of the dot patterns, compute their power
spectrum and average these power spectra to get the expected spec-
trum. Fig. 14 shows these expected power spectra for OUR (right)
and JITTER (left). We compare this against vanilla Lloyd relaxation
(middle), which is not a plotting method, as it does not produce
an unbiased result, but can serve as some upper bound of what we
could achieve when using it as a backbone. For JITTER, the spec-
trum is flat like white noise. OUR approach gives a dark region in
the middle of the spectrum confirming the blue noise behavior. The
bright line in the middle is due to the non-uniform density of dots
along the horizontal axis, where they obey to the data values. If we
run Lloyd relaxation without constraining the data along the hori-
zontal axis, the dark region in the middle gets larger (middle) and
we get uniform density points. That is why, there is no bright line in
the middle spectrum. The anisotropic structure of the dark region
is evident due to the non-square domain of the plot. A domain of
length L has a valid spectrum at only 1/L-th frequencies [SSC∗20].
In Fig. 14, since the plot along x-axis ∈ [0,1) and y-axis ∈ [0,0.2),
the spectrum is valid only at integer frequencies along the x-axis
and every (1/0.2 =) 5-th frequency along y-axis. Lastly, the central
dark line in the Lloyd relaxation spectrum (middle) implies denser
stratification of the x-axis w.r.t. the y-axis.

Jitter plot Lloyd relaxation Blue Noise Plot

Plot Plot, unwarped width density

Figure 14: The top part shows the plot, its density function as a
blue line and the unwarped plot points. When performing this on
jitter, blue noise based on Voronoi and Blue Noise Plot, we find the
three spectra seen. A well-distributed dot set should exhibit a low
energy (black) in the low-frequency regions (center). While being
inferior to Lloyd relaxation, we fair substantially better than jitter.

We also analyzed our plots using a point overlap metric presented
for scatter plots [vOHR20]. In Fig. 15 we see this overlap metric
(less is better) applied to the result of OUR and JITTER at different
dot counts and for different datasets. This quantifies what was hinted
at before: with JITTER, one can get almost-acceptable results as
well as very bad ones (as seen by the high variance; now in a while
JITTER might discover an accidental Blue Noise Plot) while OUR is
consistently providing a low variance with less overlap. When dot
count increases, variance of JITTER becomes less, but the gap to
OUR becomes even wider.

5. User Study
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Figure 15: Overlap analysis (see text).

To evaluate Blue
Noise Plots, we
conducted two user
studies. The first
is a preference
study (Sec. 5.1),
indicating that Blue
Noise Plots are
considered more
appealing over jitter
plots. The second
is a threshold ex-
periment (Sec. 5.2),
confirming that users are performing better to perceive the underly-
ing distribution when using our method. In both experiments, we
compare OUR approach (Alg. 3) to a JITTER baseline (Alg. 2).

5.1. Preference Study

Methods. To evaluate the visual preference, we conducted a
user study with a total of N = 12 participants (3 female, 9
male, Mage = 27.92,SD = 3.26). These participants were re-
cruited from a university setting, but without a particular exper-
tise in visualization. They were presented with nine different
data sets (tips, titanic, iris, penguin, geyser,
car, gapminder, tooth, and diamond) visualized using
both, OUR, as well as JITTER treatment, presented in a random-
ized side-by-side layout. They were asked two questions: First, to
rate which one is “more visually appealing” on a choice-enforcing
four-point Likert scale, ranging from “Strongly agree” to “Strongly
disagree”. Second, to indicate which treatment, if any, they prefer.

Analysis. Analyzing responses to the first question using a
Mann–Whitney U test, we find OUR (Mdn = 2.0, IQR = 1.0) to
be significantly more visually appealing compared to JITTER plots
(Mdn = 1.5, IQR = 2.0, U = 4091.5, significant p < .01). Looking
at the individual responses, we find clear preferences (significant
p < .05) for tips (difference of JITTER and OUR of 1.25) pen-
guin (0.75) iris (0.50) tooth (0.58) gapminder (0.58) and
lower responses (no significance) for car (0.08) titanic (0.16)
geyser (0.25) and diamonds (0.25).

For the second question we found a preference of OUR tech-
nique in 62.04% of all responses, in 9.26% of the cases a preference
towards the JITTER plot and 28.7% without a preference. When
further analysing responses to the second question, for the individ-
ual data sets, we find preferences of (diamond: 83.33%, gap-
minder: 75.0%, geyser: 75.0%, penguin: 83.33%, tips:
83.33%). These data sets show evenly-distributed points (exam-
ples are seen in the Fig. 6, Fig. 8, and Fig. 11, indicating that our
approach does support these situations the most. For sparse data sets,
participants responded that they do not prefer one of the techniques
(car: 58%, tooth: 58%), possibly due to the fact, that these data
sets do not suffer from overdraw.

Free-text responses. Afterwards, we gave participants the option
to respond to the following question using a free text field:“Do you
prefer one of the options? If yes, why?”.
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While analyzing the free text responses, we found that our partic-
ipants appreciated the Blue Noise Plot not only being “prettier”, but
also for being easier to understand. They for example stated, that
the Blue Noise Plot is “definitely prettier”, it looks “cleaner and less
noisy”, and “more organized”. Besides this aesthetic aspects, they
also stated that the a Blue Noise Plot is “easier to understand”, that
dots are “more easily distinguisable”, and “easier to count”.

This indicates that our approach might not only be more visually
pleasing but also improves the understanding of the data, informing
the next study to confirm these subjective judgements. Further stud-
ies would be required to understand preference for variants of our
approach, such as centrality or multi-class patterns.

5.2. Performance Study

Figure 16: Experimental stimulus, showing a dot plot of a given
data set on the left, and two possible reference distributions to the
right.

Methods. A total of N = 232 participants from the Amazon MTurk
Masters population were simultaneously shown a dot plot on the
left and two variants of a distribution to the right (Fig. 16). They
were tasked to indicate in a two-alternative forced choice, which
variant of the distribution corresponds to the dot plot. Dot plots were,
randomly, either using OUR or JITTER. Distributions comprised of
B-spline curves with five uniformly-placed control points drawn as
line plots. Their variants result from choosing a random control point
in every trial and perturbing it vertically by an offset O. In every trial,
a staircase procedure (QUEST, [WP83]) was conducted to estimate
the threshold of O i. e., at which level of difference of the reference
distribution, different dot plots allow humans to answer correctly
in 75 % of the cases. A successful treatment, would have a lower
such threshold, which is the dependent variable we record in units
of just-noticeable differences (JND) [OJEF18, HYFC14, KH15].

Data preparation. For 72 participants the threshold experiment
did not converge after 100 trials. In a staircase procedure without
bounds this indicates they clicked randomly as any deterministic
response will ultimately converge to a value, be it high or low.
Filtering resulted in 160 valid responses. Based on timings from
piloting, we paid each participant $2 for their participation, for a
target rate of $8/hour.

Analysis. A Mann-Whitney U test finds a significantly smaller
threshold for Blue Noise Plots (Mdn = .34, IQR = .16), compared
to the jitter plot (Mdn = .38, IQR = .22, U = 2698.0, p = .044), re-
jecting the hypothesis that they have identical perceptual thresholds
to convey a distribution as a dot plot.

Discussion. At first, this study design can appear contrived, and it
can be asked why not perform a direct comparison. However, there is
no single reliable offset O that is valid over all subjects, their viewing
conditions, stimuli, training effects, etc. Hence no O could also be
found in a pilot study or using any other process. Consequently,
the difference to study needs to adapt to the conditions, and this is
exactly what a staircase procedure does.

Next, one could wonder why JND is a measure of success. JND
is the smallest change a channel (from algorithm over display to the
human visual system) can convey. An efficient visual coding channel
–such as we want a plotting technique to be– aims to reproduce as
many different values as possible, to maximize the entropy, realizing
communication with a high bandwidth. Our approach has a smaller
JND, and hence, made the task easier as detailed by van Onzenoodt
et al. [OJEF18].

6. Discussion

Lloyd relaxation backbone. We use Lloyd relaxation as
an admittedly simple means to achieve a blue noise spec-
trum. Many other refined techniques have been proposed
[DGBOD12, BSD09, Fat11, SGBW10, ÖG12, ZHWW12, LSM∗19]
to produce better blue noise patters, in particular those, that support
non-uniform importance. Strikingly, adding data constraints has
not found consideration in the literature we are aware of. Lloyd,
however, as an expectation maximization process is well suited
to enforce constraints iteratively. We further could also use other
discretizations of the domain, but this one is particularly amendable
to the non-uniform metric used. We hope adding data constraints for
visualization purposes could become a new and important sub-task
to consider in computer graphics point design methods to come.

Point quality. We have shown many examples that clearly outper-
form jitter plots as a baseline found in countless papers printed every
day. We further analyzed the dot quality according to state-of-the-art
dot correlation metrics. Still the result quality of even the most naïve
blue noise method could be considered superior to ours, but this is
not a plausible comparison to make. General but biased graphics
techniques can remove or add dots, move them freely, etc. making
the task much easier than our unbiased setting. But even if there
is a gap, it is not clear if the patterns we produce are actually any
close to the best patterns we can hope for even with those additional
constraints. A reader is encouraged to apply the blue noise Turing
test: is it obvious how to move the points to make the pattern actually
better for a human? We think, yes, maybe, but in many cases only by
diminishing returns compared to what is the improvement over jitter.
Future work might find optimization approaches to get point sets
that are unbiased in our sense, yet at even higher spectral quality.

Visualization impact. Hu et al. [HSVK∗19] and Reinert et al.
[RRS13] have made links between placement of primitives accord-
ing to data and distribution quality. Our work is ignorant of the way
data points are ultimately presented, so it would be important to
have a loop back and ask what size, color, icons or animation would
allow for efficient visualization of a dot set, given the spectrum
is now high-quality. In particular, our approach can cover higher
dimensions, leading to further visualization questions. We think
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our work, and theirs, could open up new problems and solutions in
visualization where aesthetics and clutter avoidance are efficiently
optimized for.

7. Conclusions

We improve the visual appeal and functionality of jitter plots, by
re-casting their randomization into an optimization procedure to put
dots “nicely”, resulting in improved visual appeal and depiction of
univariate data sets. During our user studies, we found that our Blue
Noise Plot were not only considered to be visually more appealing
compared to frequently used jitter plots, but easier to interpret. Our
quantitative user study also supports our hypothesis that our plots
enable a more accurate estimation of univariate data sets, compared
to jitter plots.

While we use one encoding data dimension and one additional,
non-encoding dimension to target the important case of 2D visualiza-
tion, other combinations are possible. For 3D [SLC∗18] or tangible
[LIRC12] visualization, an optimization could be extended to fix
two data dimensions and optimize a third one.

In future work, other instances of randomization in visualiza-
tion, e. g., in user interfaces, and Human-Computer interaction, even
including the physical world, could be moved forward into opti-
mization problems where information is neither placed regular, nor
random, but inspired by blue noise.
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