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Deep Volumetric Ambient Occlusion

Dominik Engel and Timo Ropinski
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Fig. 1: Volume rendering with volumetric ambient occlusion achieved through Deep Volumetric Ambient Occlusion (DVAO). DVAO
uses a 3D convolutional encoder-decoder architecture, to predict ambient occlusion volumes for a given combination of volume data
and transfer function. While we introduce and compare several representation and injection strategies for capturing the transfer
function information, the shown images result from preclassified injection based on an implicit representation.

Abstract—We present a novel deep learning based technique for volumetric ambient occlusion in the context of direct volume rendering.
Our proposed Deep Volumetric Ambient Occlusion (DVAO) approach can predict per-voxel ambient occlusion in volumetric data sets,
while considering global information provided through the transfer function. The proposed neural network only needs to be executed
upon change of this global information, and thus supports real-time volume interaction. Accordingly, we demonstrate DVAO’s ability
to predict volumetric ambient occlusion, such that it can be applied interactively within direct volume rendering. To achieve the best
possible results, we propose and analyze a variety of transfer function representations and injection strategies for deep neural networks.
Based on the obtained results we also give recommendations applicable in similar volume learning scenarios. Lastly, we show that
DVAO generalizes to a variety of modalities, despite being trained on computed tomography data only.

Index Terms—Volume illumination, deep learning, direct volume rendering.

1 INTRODUCTION

Direct volume rendering (DVR) is the most common tool for volume
visualization in practice. In DVR, first a transfer function is defined
to map volume intensity to optical properties, which are then used in
a raycaster to compute the color and opacity along a ray using the
emission-absorption model. This technique usually leverages local
shading for individual samples along the rays, which results in a lack
of global illumination (GI) effects. However, non-local effects like
ambient occlusion can greatly enhance the visualization quality [26].
While several volumetric lighting techniques have been proposed in the
past in order to improve classical DVR, until today no deep learning
(DL) based volumetric lighting approaches have been proposed.

DL has recently proven to be a very effective tool in a variety of
fields. In fact DL techniques dominate the state of the art (SOTA) in
many computer vision problems [37, 41], the majority of them using
convolutional neural networks (CNNs). CNNs learn to extract complex
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high-level representations of the input data in order to solve a task at
hand, which makes them extremely flexible. Recently, they have also
been exploited in the context of rendering, such as in image based
shading [34] or denoising of single sample ray traced images [4]. In
the field of volume visualization, CNNs are for instance used to enable
super-resolution in the context of iso-surface renderings [49]. While
these works use classical 2D convolutional networks, there has also
been research on learning directly on volumetric data using 3D convolu-
tions. Examples include classification [22], segmentation [9], or using
3D CNNs to learn a complex feature space for transfer functions [7].

Most of the work conducted on 3D CNNs concentrates on extracting
information from structured volume data alone, however DVR requires
additional global information, in the form of the transfer function, that
is not directly aligned with the structural nature of the volume data set.
Therefore, such global data cannot be trivially injected into existing
CNN architectures.

In this work we propose and investigate strategies to inject such
global unstructured information into 3D convolutional neural networks
to be able to compute volumetric ambient occlusion, an effect which
has received much attention prior to the deep learning era [13,38,40,43].
In this scenario, we focus on providing transfer function information,
which is also an essential part in many other volume visualization
scenarios, to the network. To provide this gloabal information to the
learner, we propose and discuss a variety of representations and in-
jection strategies, which are influenced by the SOTA in image-based
learning tasks tackled in computer vision. To investigate these strate-
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gies, we compare them based on quality and performance, and derive
general recommendations for the representation and injection of global
unstructured information into CNNs in the context of more general vol-
ume rendering. Further, our training data set, source code and trained
models are publicly available1.

Our main contributions can be summarized as follows:

• We introduce DVAO, a novel approach to predict volumetric
ambient occlusion during interactive DVR, by facilitating a 3D
CNN.

• We present different representations and injection strategies for
providing global unstructured information to the CNN, and com-
pare them when applied to transfer function information.

• We demonstrate the effectiveness of DVAO in an extensive evalu-
ation, where we show that it generalizes beyond both, structures
and modalities seen during training.

• We formulate guidelines applicable in other volume visualization
learning scenarios.

2 RELATED WORK

A natural consequence of the break-throughs of CNNs applied to 2D
images, was the application to volumetric data sets [18]. While these
techniques are mostly used for data processing tasks, such as semantic
segmentation [37], more recently, researchers have also investigated,
how CNNs can aid the volume visualization process. In the following,
we will first discuss volumetric ambient occlusion techniques, before
we provide an overview of learning based volume illumination methods.
Volumetric illumination. While classical direct volume rendering
makes use of the local emission absorption model [30], in the past
years, several volumetric illumination techniques have been proposed,
that aim at incorporating more global effects. Ambient occlusion, as
also addressed in this paper, was one of the first more advanced volume
illumination effects, researchers have targeted.

Ropinski et al. used clustering techniques, applied to voxel neighbor-
hoods in order to enable a transfer function independent AO precom-
putation [38]. During rendering, interactive transfer function updates
were possible by classifying cluster representatives. Due to the fact,
that cluster representatives are represented as a distribution, rather than
a spatial data structure, artifacts can be expected. To allow for interac-
tive AO rendering, Hernell et al. instead have proposed a spatial data
structure together with efficient ray evaluation schemes [13]. With their
approach, they are able to capture local illumination effects, as they
limit the length of the ambient occlusion rays in order to limit the num-
ber of needed operations. Naturally, this limit depends on the feature
scale of the dataset, which requires manual tuning according to the data
set at hand. Another interactive approach has been proposed by Diaz
et al., who have exploited summed area tables in order to approximate
occlusion-based effects [11].

While the previous techniques were in principle independent of the
underlying rendering technique, Schott et al. have proposed directional
occlusion shading, a method that exploits the sequential processing of
slice-based volume rendering [40]. This technique has later been ex-

tended by Šoltészová et al., in order to support directional illumination
effects [43], while Schott et al. extended it to also incorporate tubu-
lar structures [39]. The work by Kroes and Eisemann describes how
volumetric ambient occlusion can be realized efficiently on modern
GPUs [24].

After interactive volumetric ambient occlusion has been tackled
by these approaches, researchers started focusing on more complex
volume illumination challenges. As these methods are largely beyond
the scope of this paper, we rather focus on a few milestones, than
addressing the entire body of work. Kroes et al. have presented the
exposure renderer, which realizes Monte Carlo volume ray-tracing,
leading to an unprecedented quality while unfortunately only allowing
progressive updates [23]. Ament et al. have preintegrated multiple

1Project Page: dominikengel.com/dvao

scattering effects, by considering a finite spherical region centered at
the current volume sample [2]. Later, Ament and Dachsbacher proposed
to realize anisotropic shading effects in DVR by also analyzing the
ambient region around a volume sample [1]. Jönnson et al. instead
developed an efficient data structure, which enables them to apply
photon mapping in the context of DVR [20]. An entirely different
approach has been followed upon by Wald et al., as they present efficient
CPU data structures to realize interactive ray tracing, which they also
demonstrate by realizing ambient occlusion effects [47]. More recently,
Magnus et al. have realized the integration of refraction and caustics
into an interactive DVR pipeline, leading to realistic results [29].

While all these techniques have a similar goal as DVAO, i.e., achiev-
ing advanced volumetric illumination effects, none of the previous work
facilitated deep learning architectures to reach this goal.

CNN-based volume visualization. While many approaches have been
published regarding volumetric illumination models, rather few CNN-
based volume visualizations exist.

Jain et al. present a deep encoder decoder architecture, which com-
presses a volume, which is then uncompressed before rendering via ray
casting [17]. While also exploiting 3D learning, the process does, in
contrast to our approach, not involve any rendering related properties,
such as for instance ambient occlusion or the transfer function. Quan
et al. instead introduce a probabilistic approach that exploits sparse
3D convolutional encoding in order to generate probabilistic transfer
functions [36]. With a similar goal, Cheng et al. extract features from
a trained CNN, which are then quantized to obtain high-dimensional
features for each voxel, such that classification is aided [6].

One of the first published approaches for direct image generation
in the context of volume rendering is a generative adversarial network
(GAN) trained for the generation of volume rendered images [3]. In-
stead of operating on actual volumes, the authors train an image-based
GAN on a set of volume rendered images, generated using different
viewpoints and transfer functions. Based on this training data, their
model learns to predict volume rendered images. Unfortunately, chang-
ing the data set means training a new model, which is a costly process
also incorporating the generation of new renderings for the training set.
Hong et al. follow another approach, whereby they exploit the volu-
metric data set and an example image [14]. Based on this combination
a GAN synthesizes a new rendering of the data set, while obeying to
rendering parameters extracted from the sample image. In contrast,
Weiss et al. propose a super-resolution approach for the generation
of isosurface renderings, whereby they also take into account ambient
occlusion [49]. However, instead of learning in the 3D domain, their
approach learns on low-resolution normal and depth maps in order to
predict high-resolution maps which are then illuminated using screen-
space shading. Similar to our approach, Tkachev et al. rather operate
on the volumetric data at hand [44]. Their approach enables the pre-
diction of future data values in time-varying data sets, by exploiting
neighborhood information.

3 METHOD

In this section we introduce DVAO. In contrast to prior approaches
that compute ambient occlusion numerically, we frame the problem
of volumetric ambient occlusion as a supervised learning problem.
Thus, we train a 3D convolutional neural network to predict volumetric
ambient occlusion. Our predicted AO volume is at a resolution of 1283

and our figures are rendered by ray casting the full resolution volume,
while sampling the AO at the given 1283.

Since volumetric ambient occlusion depends highly on the opac-
ity of the volume, our neural net needs to consider opacity, which is
usually modulated by means of the transfer function. Unfortunately,
conventional CNNs can only operate on structured data, such as images
or volumes, and are thus incompatible with the typically unstructured
representations of transfer functions. In order to make such unstruc-
tured information compatible with our CNN, we investigate a variety
of possible representations and injection strategies for providing the
information represented by the transfer function to the CNN.

In the following we first discuss the data that is necessary to train
and validate our neural network, as well as challenges arising from their
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raw form. Next we describe our proposed neural network architecture
and present the different representations and injection strategies for
transfer functions. Furthermore, we discuss details regarding the choice
of loss function and the overall training procedure.

3.1 Data

In this section we describe what kind of data is mandatory to learn
volumetric ambient occlusion and discuss the problems arising from
the raw data representations.

In order to compute ambient occlusion a spatial description of optical
properties is necessary. Traditionally this is done by defining a transfer
function consisting of a color mapping c(s) and an opacity mapping
τ(s) that describes the extinction density for a scalar field s. The amount
of incident light for any position within the scalar field is then inherently
defined through this mapping. In order to train a neural network to
predict the amount of ambient occlusion, a large amount of training
examples consisting of pairs of volume data and opacity mappings is
necessary. Further, a ground truth ambient occlusion must be provided
for each training example to enable supervised training.

In the following we first describe the CQ500 dataset [8] containing
the volume data we use for training, as well as the pre-processing
necessary to use the volumes in our proposed neural network. For the
opacity mappings we randomly generate reasonable transfer functions
that we can use for training. Lastly we describe how we compute the
ground truth ambient occlusion volumes using Monte Carlo raycasting.
See the supplemental material for visualized training examples.

CQ500 We trained and validated our method on Qure.ai’s CQ500
dataset [8], which consists of 491 CT scans of human heads. We used
397 of those scans for training and 80 for validation of the neural
network. The remaining scans were omitted due to being outliers in
terms of aspect ratio and number of slices. The chosen subset of the
data has a resolution of 512×512 per slice and has between 101 and
645 slices per volume. The volumes are given in Hounsfield units in
the range of [0,4095] and normalized to [0,1]. Furthermore we crop
each volume to its largest non-transparent subvolume, according to
the transfer function it is paired with during training. The cropped
volume is resized to 128× 128× 128 before feeding into the neural
network. Note that this resolution is determined by the amount of
GPU memory available in our hardware and we recommend using
the highest resolution possible. Lastly we apply data augmentation
to increase the effective amount of training volumes available using
random permutation and flipping of the spatial dimensions.

Transfer Function Generation For each training example we generate
a random opacity transfer function in order to maximize the variation
in our training data. Note that there is a large corpus of work regarding
the choice of transfer functions for volume rendering [28], however
these works usually try to find the single best transfer function for
a visualization, while we are mostly looking for a wide variety of
transfer functions that are still reasonable in the sense that they map
opacity to coherent structures in the volume. In order to learn a large
and representative space of transfer functions, we generate random
piece-wise linear opacity transfer functions using between 1 and 5 non-
overlapping trapezoids. To ensure that every transfer function actually
assigns non-zero opacity to prominent structures in the volumes, the
trapezoids are centered around peaks in the volume histogram, while
ignoring peaks representing air or visible parts of the scanner. The
trapezoids are described with a top and bottom height htop,hbottom, as
well as an inner and outer width winner,wouter, which are randomly
generated according to the following rule:

htop ∼U(hmin,hmax), hbottom ∼U(hmin,htop)

wouter ∼U(wmin,wmax), winner ∼U(wmin,wouter)

where U denotes a uniform distribution. We empirically chose hmin =
0.1, hmax = 0.9 and wmin = 0.01 , wmax = 0.1 to generate the transfer
functions. After generating the trapezoids, we take their corner points
to form an unordered set of points S ⊂ R

2 consisting of pairs of nor-
malized intensity value and opacity mapping. This set resembles an
unstructured transfer function representation. Furthermore a discretized

transfer function representation T ∈ [0,1]R in the form of a 1D texture
with resolution R can be easily derived from S using linear interpolation.
Note that neither representation is compatible with 3D convolutional
neural networks by default and specialized TF representations have to
be derived in order to feed the transfer function into the network. We
will use both the unstructured representation S and the discretized rep-
resentation T to derive CNN compatible TF representations in Sect. 3.3.
The discretized representation T is further used to compute the ground
truth ambient occlusion.
Ambient Occlusion Ground Truth In order to train our neural net-
work in a supervised fashion, we need to provide a ground truth ambient
occlusion volume for each pair of input volume and transfer function.
The goal is for this ground truth to be as accurate as possible while
suiting the needs of volume visualization. To achieve this we computed
the ambient occlusion ground truth using Monte Carlo simulation of
light rays, while restricting the length of the rays to a maximum of
D, which is 10% of the volume diameter. We chose to restrict the
ray length in order to avoid fully shadowed regions, which is usually
desirable in volume visualization. We cast rays from each voxel center
x in random directions ω ∼ Ω and integrate an opacity value along the
ray using the emission and absorption model. The occlusion of ambient
light at voxel center x is described by Equation 1.

AO(x) =
∫

Ω
p(ω)

(

1−

∫ x+ωD

x+ωε
q(s)e−

∫ s
x+ωε τ(t)dtds

)

dω (1)

with extinction coefficient τ , probability of sampled angle p(ω), small
offset ε from the voxel center to prevent self-occlusion and light con-
tribution q(s) at point s along the ray. We chose to cast 512 rays per
voxel to generate the ground truth ambient occlusion volume.

3.2 Neural Network Architecture

Fig. 2 illustrates the main convolutional architecture which we propose
to learn volumetric ambient occlusion. It resembles an encoder de-
coder network consisting of 3D convolutions and with skip connections
similar to U-Net [9, 37].

We design our architecture to encode volumes of size 1283
× 1

to a latent representation of size 13
× 512, which is then decoded

to a 1283
× 1 ambient occlusion volume. The latent representation

resembles a low-dimensional compressed feature vector describing the
full volume and contains the high-level features that the convolutional
encoder learns to extract. Our architecture is composed of ConvBlocks,
which consist of two 3D convolutions, instance normalizations (IN) [45]
and Mish activation functions [33] each, as depicted in Fig. 2b. Note
hereby that the IN layer is equivalent to a standard batch normalization
(BN) layer [16] in our case, since we use a batch size of 1. However
we would still use IN over BN with larger batch sizes, since we modify
this layer for one of our injection strategies (see Sect. 3.4), where we
explicitly modulate feature tensors according to the transfer function,
which would be different for every item in a batch. Also we chose Mish
over a standard ReLU activation, since it performs slightly better on a
wide range of computer vision tasks [33] and we found this to also be
true for our task in our early experiments.

During encoding, we trilinearly downsample the feature volumes to
half resolution between each ConvBlock, while doubling the number
of convolutional filters in the next ConvBlock, as it is conventional in
CNNS. We limit the number of filters to a maximum of 512 to conserve
memory. The decoder part is symmetric to the encoder, trilinearly
upsampling and halving the number of filters every step. Like U-Net we
employ skip connections at every spatial resolution and concatenate the
encoder’s feature tensors with the decoded feature tensors before each
ConvBlock in the decoder to make early low-level features available
during decoding.

Note that in contrast to the 3D U-Net by Çiçek et al. [9], we chose to
encode the volume all the way down to a spatial resolution of 13. This
makes the network deeper and enables it to learn more complex rep-
resentations. Furthermore, one of our injection strategies requires the
volume input to be reduced to a vector and we wanted to use the same
common base network for all strategies to enable a fair comparison.
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(a) DVAO’s encoder decoder architecture
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(b) ConvBlocks used in the architecture

Fig. 2: An overview of the main architecture that operates on the volume data. The architecture consists of ConvBlocks with two 3D-convolutional
layers each. The ConvBlocks are parameterized by the number of filters inside the convolutional layers. Using those ConvBlocks, the architecture
forms a typical encoder decoder architecture in a U-shape, similar to a 3D U-Net [46]. Note that between each ConvBlock in the encoder /
decoder, we downsample / upsample the volume by a factor of two and double / halve the number of filters for the next ConvBlock respectively.
The arrows from left to right denote skip connections.

3.3 Transfer Function Representation

In Sect. 3.1 we defined two types of raw representations for transfer
functions, namely a set S of 2D TF points consisting of intensity and
opacity, and a discretized representation T in the form of a 1D texture.
Unfortunately neither of those representations is compatible with the
input layer of our CNN, so we need to derive special TF representations
that we can then inject into the network.

We define two types of transfer function representations in order
to lastly describe our injection strategies: implicit and explicit repre-
sentations. An implicit representation modifies the actual volume data
to implicitly include the transfer function information. Implicit rep-
resentations are therefore volumetric representations that are directly
compatible with the input layer of our 3D CNN. In contrast to that,
explicit representations use TF Extractors to extract an explicit TF de-
scriptor from raw transfer function data. The TF descriptor is a feature
vector containing a high-level description of the transfer function that
is learned by the TF extractor network during training. The explicit
representation approach is thereby analogous to existing late-fusion
concepts [42] of different modalities in neural networks, where a fea-
ture vector is extracted separately for each modality and then fed into a
final network making the prediction. In our case the feature extractors
are the convolutional encoder and the TF extractor, while the convolu-
tional decoder makes the final prediction. Note that our extracted TF
descriptor is also not directly compatible with the CNN, however it has
a fixed length and allows us to inject the TF information in several ways
that we explain in Sect. 3.4. In the following we present the implicit
and explicit representations that we compare in this work.

Explicit point-based representation The explicit point-based repre-
sentation is based on the raw TF representation S consisting of a list
of points. While this representation is very efficient in representing a
piece-wise linear transfer function, it is inherently incompatible with
CNNs due to its unstructured nature. The unstructured nature arises
from the fact that the set S may contain a varying number of points
depending on the transfer function. Unfortunately this varying size
prevents us to use the representation directly in a CNN, since every
tensor in a CNN needs to have a fixed shape.

In order to solve the problems with order independence and varying
length of this representation, we looked at promising approaches from
point cloud learning that deal with very similar problems. We design our
TF extractor similar to PointNet [5], which has proven very successful
in extracting meaningful features from unstructured point data. The
exact architecture is illustrated in Fig. 3a and uses three shared multi-
layer perceptrons (MLP) to describe each point as a feature of size
64 and reduces the set of points to a fixed-length TF descriptor using
max pooling. While this fixed-length feature vector is still not directly
compatible with the input layer of the CNN, it is compatible with
different strategies explained in Sect. 3.4.

Explicit texture-based representation This representation is based
on the raw discretized TF representation T , as defined in Sect. 3.1,

that resembles a 1D texture as it is common in DVR. This 1D texture
representation is also not directly compatible with 3D CNNs, which
is why we again extract a TF descriptor from this raw representation.
Note that the 1D texture is already a fixed-length 1-dimensional rep-
resentation of the transfer function that would be compatible with our
injection strategies. The problem with using the TF texture directly
arises from the fact that due to the discretization, the resulting vector is
either unnecessarily large and sparse when using high resolutions or
loses a lot of information when using low resolution. The 1D texture is
therefore a very inefficient representation for neural networks.

To solve this problem we propose to again extract an efficient TF
descriptor from high resolution TF textures using a 1D convolutional
network. We chose 1D CNNs due to their parameter efficiency and
their success on other 1D modalities like time-series data [12]. Our 1D-
convolutional TF extractor is illustrated in Fig. 3b. The extractor CNN
consists of three strided convolution layers (including normalization
and activation), an average pooling layer and lastly an MLP that outputs
the TF descriptor.

Implicit representation The explicit representations use special extrac-
tors to describe transfer functions as low dimensional vectors that are
fed into the network through specialized injection strategies (compare
Sect. 3.4). In contrast to that, the implicit representation incorporates
the transfer function directly into the volume, preserving the volumetric
shape and thus being directly compatible with CNNs. We obtain the
implicit representation by directly applying the transfer function to the
input volume, resulting in an opacity volume capturing the transfer
function information. The implicit representation allows us to com-
bine the transfer function with basically any volumetric feature tensor
inside our network, while explicit representations can only be com-
bined with scalars or vectors. Note that this representation has the
benefit of directly representing the optical properties spatially, while
the network has to learn this spatial relation itself when using explicit
representations.

TF Points MaxPoolMLP 64 TF DescMLP 64MLP 64

(a) The PointNet-like extractor used for the explicit point-based representation. Each point

is individually processed by the shared MLPs to produce a feature descriptor of size 64.

The feature points are reduced using max pooling to produce the TF descriptor.

Conv 8

Conv 16

Conv 32

TF Texture AvgPool Flatten MLP 64 TF Desc

(b) The 1D convolutional extractor used for the explicit texture-based representation. The

Conv blocks each depict a combination of 1D convolution (stride=2), Mish activation and

instance normalization. After three of those blocks the 32× 512 feature is pooled to a

spatial resolution of 16, flattened and fed into the final MLP which outputs the TF descriptor

of size 64

Fig. 3: The transfer function extractor architectures.
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Fig. 4: Comparison of injection strategies. Images a) and e) on the left show the fully rendered ground truth and ambient occlusion respectively.
The images on the right compare results of different injection strategies (all difference images are scaled by a factor of 3). We can see that
the strategies using implicit representations b) and f) produce the best results, which falls in line with our recorded metrics in Table 1. The
explicit representations perform consistently worse and mostly coincide with our recorded metrics, with the exception of the Texture-based AdaIN
approach. This approach turns out to be instable in practice and produces mixed results.

3.4 Injection Strategies

An injection strategy describes a method of feeding a transfer function
representation into the CNN. In general implicit and explicit TF rep-
resentations require different strategies, since explicit representations
have the shape of a vector and the implicit representation has the shape
of a volume. Here we outline and describe possible injection strategies
for all these scenarios.

For the implicit representations we test two different injection strate-
gies. The Preclassification strategy makes direct use of the volumetric
shape of the implicit representation and injects the combined volume
and TF information, in the form of an opacity volume, directly into the
CNN’s input layer. Since this fine-grained spatial representation of the
TF might be useful information to many layers in our CNN, we further
test Global Concatenation which is a multi-scale approach that injects
the opacity volume on every scale.

For the explicit TF representations we test two approaches that have
been very successful in combining different modalities in other fields
and thus deserve in-depth investigations in our work. The first of the
two approaches is Latent Concatenation, which combines both the
extracted volume and TF information in the latent space of our network.
The other approach is adaptive instance normalization (AdaIN) [15]
that modulates the feature tensors in the decoder using the transfer
function. In the following we explain those strategies in detail.

Preclassification As shown in Fig. 6a (green arrow), the preclassifi-
cation strategy directly injects the opacity volume representation τ(x)
into the CNN’s input layer instead of the intensity volume x. With this
strategy the volume and transfer function information is jointly pro-
cessed by the convolutional encoder and a combined representation is
learned. In a sense this is similar to the approach used in deep shading
techniques [34], where relevant geometric and optical information is
provided to a 2D CNN in an image-based form. This strategy has the
benefit of directly representing the TF information spatially, providing
fine structural details in opacity directly to the CNN, compared to the
strategies based on explicit representations that do not have this spatial
relation. Note that as a downside, the preclassification strategy requires
the re-execution of the full network upon transfer function change,
while other representations can omit the execution of the convolutional
encoder.

Global Concatenation With global concatenation we use a multi-scale
version of the implicit opacity volume representation τ(x) to inject
the transfer function information at multiple scales into the network.

This is motivated by the general success of multi-scale architectures for
computer vision problems [25]. Injecting the opacity volume at multiple
scales allows the convolutional layers to focus on feature extraction,
rather than wasting capacity to remember opacity structure that we
can readily provide. For the global concatenation strategy the opacity
volume is trilinearly downsampled to all resolutions present in the
network and concatenated with the output of each encoder ConvBlock,
effectively combining extracted features and opacity in one tensor. The
combined opacity and feature volume is then made available to the
decoder ConvBlocks at all scales through the skip connections, as
illustrated in Fig. 6a (blue arrows).

Intensity

Volume

128
3
× 1

Opacity

Volume

128
3
× 1

1
2
8
3
×
1
6

6
4
3
×
3
2

3
2
3
×
6
4

1
6
3
×
1
2
8

8
3
×
2
5
6

4
3
×
5
1
2

2
3
×
5
1
2

1
×
5
1
2

1
×
5
1
2

1
×
5
1
2

1
2
8
3
×
1
6

6
4
3
×
3
2

3
2
3
×
6
4

1
6
3
×
1
2
8

8
3
×
2
5
6

4
3
×
5
1
2

2
3
×
5
1
2

Ambient

Occlusion

Volume

128
3
× 1

(a) Injections for Implicit Representations. In the Preclassified strategy (green) we first

apply the transfer function to the volume to get an implicit representation that combines

volume and TF information in one tensor, which is fed into the CNN. The Global Concate-

nation (blue) uses the same implicit representation, but injects it in the skip connections
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the CNN. The Adaptive Instance Normalization (AdaIN) strategy (blue) uses an explicit

representation to modulate the feature tensors in the decoder through the normalization

layers. Note that with AdaIN, each normalization layer has an additional MLP to predict

the appropriate means and variances, increasing the parameters in the decoder.

Fig. 6: Overview of the injection strategies.
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(a) MSE (b) DSSIM-2D (c) DSSIM-2D + MSE (d) DSSIM-3D (e) DSSIM-3D + MSE (f) Ground Truth

Fig. 5: Comparison of predictions from models trained with different loss functions. Note that the prediction from the model trained with MSE
lacks very bright and very dark extremes and mostly predicts an average occlusion. In contrast to that, the DSSIM-2D and DSSIM-3D models
accentuate such bright and dark spots, often overshooting. Using a combination of DSSIM and MSE as loss alleviates the problems of each
individual loss and results in predictions with good average occlusion and highlights. The volume is from the CQ500 dataset [8].

Latent Concatenation As discussed in Sect. 3.2, our proposed CNN
resembles an encoder decoder architecture. For the latent concate-
nation strategy we consider the encoder and decoder separately as a
convolutional feature extractor for volumes, and a generative network
that produces volumetric ambient occlusion respectively. The encoder
hereby processes the input volume and extracts a low-dimensional
latent vector of length 512 that contains highly compressed global in-
formation about the input volume. This latent vector can thus be seen
as input to the generative decoder. For the latent concatenation strat-
egy we propose to combine the this latent vector with the explicit TF
descriptor by concatenation as depicted in Fig. 6b (green arrow). The
concatenated vector contains global information of both the volume and
the transfer function and thus conditions the decoder to predict illumi-
nation that is coherent with both the volume modality and the transfer
function. This kind of strategy has proven very useful in conditional
generative modeling [32] and deserves investigation for our volumetric
illumination problem. Also note that this strategy will be beneficial
during inference, compared to Preclassification, due to the fact that it
only requires the TF extractor and the decoder to be re-executed upon
transfer function updates, while the compressed volume representation
from the encoder stays constant.

Adaptive Instance Normalization Our last injection strategy is to feed
the transfer function information to the network through TF-conditioned
feature tensor modulation in the decoder network. This is achieved
by replacing the instance normalization layers in the decoder with
adaptive instance normalization (AdaIN) [15] layers. Instance normal-
ization (IN) [45] normalizes an incoming tensor to zero mean and unit
variance across spatial dimensions for each feature and for each item
in a mini-batch. The normalized feature tensors are then scaled and
shifted using learned parameters, as described by Equation 2.

IN(x) = γ

(

x−µx

σx

)

+β (2)

In traditional IN the new scale γ and shift β of feature tensors is learned
directly, while AdaIN uses a multi-layer perceptron (MLP) to predict
appropriate scales γ and shifts β from external inputs. This approach
has shown great success in both style transfer [15] and conditional
image generation [21] tasks recently and enabled networks from these
domains to control their outputs based on external information, which

seems directly applicable to our problem. Thus, for this injection
strategy we propose to replace the IN layers in the decoder with AdaIN
layers and use our learned explicit TF descriptor as their modulation
input. For each AdaIN layer, as depicted by the blue arrows in Fig. 6b,
an additional MLP is needed.

3.5 Training

We train our network in a supervised fashion using stochastic gradient
descent. As optimizer we use rectified Adam [27] with Lookahead [50]
with the default parameters and a learning rate of 0.001. As batch
size we use 1, since we cannot fit larger batches in memory with the
proposed architecture. Simulating larger batch sizes using gradient ac-
cumulation did not improve training performance in our tests, however
we did not analyse this in full detail. Our network was implemented in
PyTorch [35] and is trained using mixed precision. The training takes
around 20 hours on a single RTX 2080 Ti GPU, requiring 10.5 GB of
GPU memory.
Loss The loss function defines the objective of the neural network
and is critical to produce accurate volumetric ambient occlusion. We
tested several loss functions and propose to use a combination of mean
squared error (MSE) and structural dissimilarity index (DSSIM). The
final loss L (p, t) of a prediction p and target t is defined in Equation 3
for volumes of shape W ×H ×D with N =W ·H ·D:

L (p, t) = 1−
(2µpµt + c1)(2σpt + c2)

(µ2
p +µ2

t + c1)(σ2
p +σ2

t + c2)
+

α

N

N

∑
i

(pi − ti)
2 (3)

= DSSIM(p, t)+α ·MSE(p, t)

Hereby c1 = 0.01,c2 = 0.03 are small constants for numerical stability
and µx, σ2

x and σxy are the means, variances and covariances within
a local neighborhood for all voxels of x (and y) respectively. α is a
hyperparameter to balance the two losses and we empirically chose
α = 5 based on our experiments, however we found that the training is
not very sensitive to this parameter.

Note that traditional image-based SSIM [48] uses a 2D neighborhood
to compute local means, variances and covariances. We use this image-
based method on all slices along the z dimension and use the average
over all slices to form the DSSIM-2D loss. Analogously, we define
the DSSIM-3D loss, which uses 3D neighborhoods instead, in order to
better assess structural similarity along the z dimension.
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Table 1: Performance comparison of the injection strategies (columns) for different loss functions (rows). We report SSIM, MSE and inference
time for each method. The Preclassified strategy in general performs the best while being the slowest. While DSSIM-2D results in the best test
SSIM and DSSIM-3D + MSE in the best MSE for this strategy, we determine the DSSIM-2D + MSE model to perform the best overall since it
nearly matches our best results in both SSIM and MSE. The inference times were measured on an RTX 2070 and mostly show that strategies that
can omit execution of the encoder during inference get a slight performance advantage over the Preclassified strategy.

REPRESENTATION Implicit Explicit Texture-Based Explicit Point-Based

INJECTION PRECLASSIFIED GLOBAL CONCAT ADAPTIVE IN LATENT CONCAT ADAPTIVE IN LATENT CONCAT

LOSS SSIM MSE SSIM MSE SSIM MSE SSIM MSE SSIM MSE SSIM MSE

DSSIM-2D .879 .029 .814 .041 .737 .052 .656 .076 .627 .084 .657 .084
DSSIM-2D + MSE .875 .008 .813 .015 .673 .050 .610 .062 .525 .112 .610 .051
DSSIM-3D .874 .033 .817 .034 .625 .053 .675 .074 .517 .078 .660 .075
DSSIM-3D + MSE .866 .007 .811 .017 .681 .034 .645 .055 .479 .089 .588 .070
MSE .776 .008 .679 .015 .508 .064 .534 .063 .503 .092 .556 .057

INFERENCE TIME 411ms 348ms 347ms 340ms 346ms 329ms

Mixed precision training Training 3D convolutional neural networks
on large volume data is very computationally expensive and requires
a lot of memory. In order to counter current hardware limitations we
use mixed precision [31] for both training and inference. Traditionally
neural networks are trained with 32-bit floating point weights and
all computations are performed with 32-bit precision. We use 16-
bit floating point computations and weights in all layers except for
instance normalization, due to numerical stability. While we still hold
a full 32-bit precision set of all parameters, as suggested by NVIDIA’s
implementation2, we can drastically reduce the memory consumption
and running time of our network. In fact, using this techniques enables
us to use a comparably large network and volume resolution [9, 22].

4 EVALUATION

In this section we present our evaluation of DVAO. First, we compare
the different transfer function representations and injection strategies.
After identifying the best strategy, we further investigate the effect of
the loss function and the effect of changing the network size. Lastly,
we investigate generalization across structures and modalities.

4.1 Representations and Injection Strategies

In order to evaluate all combinations of transfer function representation,
injection strategy and loss function that we proposed in Sect. 3.4, we
run 30 different training runs, by training 6 different architectures with
5 different losses each. The obtained results, which we report via error
metrics and generated images, are generated from a heldout set not
seen during training. Our results are summarized in Table 1, while
Fig. 4 shows example predictions for the best performing model of
each strategy.

As laid out in Table 1, both the model with the highest SSIM (0.879)
and the model with the lowest MSE (0.007) use the Preclassified injec-
tion strategy. Comparing the numbers with actually rendered results in
Fig. 4b confirms that indeed the Preclassified strategy achieves the best
results. Since the best scores on our error metrics for this technique
are achieved by different models, we found the Preclassified method
using the DSSIM-2D + MSE loss to be the overall best model, since it
is very close to the best MSE and SSIM at the same time. This is also
further investigated in the loss function comparison below in Sect. 4.2.
The Global Concatenation strategy scores second place according to
our metrics and Fig. 4f clearly confirms this placement. The latent
concatenation strategies (Fig. 4c and 4d) produce a lot blurrier results,
which makes sense considering that this injection strategy combines
the transfer function with a volume representation (the latent vector)
that has its spatial dimensions completely reduced. By injecting the
TF information only in the bottleneck, it is hard for the network to
reconstruct fine structures accurately. Lastly we can see that while
the AdaIN-based strategies subjectively perform the worst visually in
Fig. 4g and 4h, they can still match the latent concatenation strategies

2https://github.com/nvidia/apex

in terms of error metrics. We found that the AdaIN-based methods are
rather instable and produce very mixed results on all datasets. However,
since they performed generally worse than the implicit techniques, we
did not further investigate this behavior.

Overall, we found that the implicit representations usually work
better than the explicit representations, with the Preclassified strategy
performing best in all our tests. The rendered results shown in Fig. 4
confirm this finding. We believe, that the Preclassified strategy works
best, because the network can learn the volume representation jointly
with the transfer function and has in general more parameters to process
the transfer function information through the convolutional encoder.
In contrast to that, the other methods extract the volume and transfer
function information separately and only process them jointly in the de-
coding part of the network. Nevertheless, to investigate this hypothesis,
more experiments are required in future work.

4.2 Loss functions

We investigate five different loss functions, namely the structural dissim-
ilarity index in 2D (DSSIM-2D) and 3D (DSSIM-3D) (see Sect. 3.5),
as well as MSE, and combinations of DSSIM and MSE. The resulting
prediction performance comparison is summarized in Table 1.

Starting with the simple MSE loss, we found that our network is
able to already learn rough and blurry volumetric ambient occlusion.
However, while on average producing reasonable ambient occlusion,
the predictions often lack fine details and contrast (compare for exam-
ple the gap between skin and skull or the throat region in Fig. 5a). To
counter this issue we trained our networks using DSSIM. The models
trained with DSSIM produce more fine structured details in the ambi-
ent occlusion, while often deviating from the ground truth in overall
brightness (compare Fig. 5b and 5d). This falls in line with our expecta-
tions, since DSSIM is known to tolerate slight variations in brightness
more than typical MSE [48]. Finally we found that the combination of
DSSIM and MSE combines the advantages of both losses, and is thus
able to produce ambient occlusion volumes with a sufficient degree of
details, while staying close to the overall brightness of the ground truth.

2D vs. 3D SSIM As detailed in Sect. 3.5, we investigated both 2D
image-based SSIM and 3D volume-based SSIM. In the evaluation we
did not find large differences between the two, as the resulting models
perform very similar (Test SSIM 0.879 vs 0.874). We hypothesized
that the 3D SSIM should perform better, since the 2D SSIM only takes
into account similarity within each slice of the volume, as compared to
small bricks around each voxel. We explain this result with the large
receptive field that is used to predict each voxel. The prediction of a
single output voxel takes a large 3D neighborhood into account, due
to the receptive field of the prior convolutional layers. Even though
DSSIM-2D does not penalize missing similarity along the z dimension
directly, the network is still forced to learn a coherent 3D structure
internally, since the 3D convolutions incorporate a 3D neighborhood
by design, regardless of the loss function.
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4.3 Network Size

After finding the best injection strategy and loss function, we evaluated
the effect of changing the number of parameters in the neural net. The
goal of this experiment was to determine if DVAO has a sufficient
number of parameters or if it could be reduced in order to speed up our
technique. To control this parameter we adjusted the number of filters
in the convolutional layers of our main architecture, since this allows
us to use a different amount of parameters without changing the overall
architecture.

In addition to the default model, which starts with 16 filters in the
first ConvBlock, doubling upon downsampling, we trained models with
8 and 24 filters in the first convolution. With 8 filters the network has
roughly half the amount of parameters of the default size and 24 filters
maxes out our memory capacity, representing the largest model we can
train in practice. The results are provided in Table 2 and indicate that
the model improves only very slightly when using more parameters,
while the inference time increases significantly. For the large network
the actually rendered results are very close to the default network size,
while halving the number of filters significantly reduces the quality
of the predictions, both in terms of error metrics and also visually.
Renders for qualitative comparison can be found in the supplemental
material. Note that while the smaller model significantly reduces the
inference time from 411ms to 239ms on average, the practical impact
of the reduced inference time is rather low for our application, due to
the fact that the network is only executed when the volume or transfer
function is changed. However, other applications might benefit from
trading speed for quality.

Table 2: The effect of increasing the number of network parameters.
No. Filters depicts the number of filters in the first ConvBlock in our
architecture, which is doubled after each downsampling step.

NO. FILTERS SSIM MSE INFERENCE TIME (ms)

8 0.843 0.013 261
16 0.875 0.008 411
24 0.880 0.007 572

4.4 Generalization

In the previous experiments we evaluated DVAO’s performance on
held-out CT data that was not used for training, however the modality
was CT only and consisted only of human heads. In this section, we
apply our method to other structures and other modalities, in order to
investigate DVAO’s generalization capabilities. As displayed in the
supplemental material, we found that DVAO is able to predict ambient
occlusion in computed tomography scans of animals. Comparing our
predictions against the ground truth we achieve a SSIM of 0.786 on the
mouse micro-CT dataset and a SSIM of 0.866 on the chameleon dataset.
This indicates that DVAO generalizes beyond the structure of human
head data. Furthermore, Fig. 7 shows our results on different input
modalities, namely magnetic resonance imaging (MRI) and electron
microscopy (EM) volume data. For the MRI data we achieve a SSIM
of 0.751 and for the EM a SSIM of 0.869. As it can be seen, DVAO is
still able to predict accurate ambient occlusion, despite having never
encountered these modalities during training.

5 DISCUSSION

In this section we discuss the limitations of our approach, and the
implications of our findings for volume illumination learning in general.
As we have demonstrated in our evaluation, DVAO is able to produce
detailed volumetric ambient occlusion on a variety of structures and
modalities, making it a valid choice to enhance classical DVR as it
is still often used in medicine. Our approach can easily be integrated
in existing DVR pipelines through the addition of a simple texture
lookup, once predictions have been performed. However, our approach
is limited to rather low resolution volumes of size 1283, since 3D
CNNs become too computationally expensive with higher resolutions
and are quickly limited by GPU memory. Nevertheless, since ambient

occlusion is a rather low frequency illumination effect, and the original
volume is provided in original resolution, this does not compromise
image quality. While we cannot do predictions for each frame, as
these would take up too much time, we only predict a new ambient
occlusion volume, once the transfer function has been changed. As
reported, this takes on average 411 ms with our best method, which we
found sufficiently fast in practice to not restrict interactivity. This is
demonstrated in our video in the supplemental material. Furthermore
our predicted occlusion volumes can still differ significantly from the
ground truth occasionally and especially deviations in overall brightness
and contrast are noticeable in those cases. We discuss failures in visual
quality further in the supplemental material.

Our experiments with deep learning based volumetric illumination
lead us to the following guidelines applicable to similar volume learning
tasks with additional global information:

• When learning on volumes in the context of volume visualization,
additional global unstructured information, such as the transfer
function in our case, is best represented implicitly in the input
volume itself. Combining the global information at the very be-
ginning of the CNN allows to use the full feature extraction capa-
bilities of the neural network, which produces better results than
using an explicitly learned representations of global information.

• When predicting volumetric illumination, the structural similarity
index is a very effective objective function and should be used in
addition to standard regression losses like MSE or mean absolute
error. According to our findings the 2D image-based SSIM also
performs well on 3D data, while being significantly cheaper to
compute.

• Reducing the standard floating point precision in neural networks
to 16 bit makes volume learning more feasible, allowing for
higher resolutions, more parameters and faster computation. We
did not find significant downsides to mixed precision training and
recommend it in volume learning scenarios.

5.1 Implicit vs. Explicit TF Representation

In this section we further discuss pros and cons for implicit and explicit
TF representations and argue why our explicit representations deserve
future investigations, despite performing inferior in the reported tests.

As we stated before, the implicit representations clearly make the
learning task easier for the network, because it is not required to learn
the transfer function application on top of the illumination task, as the
explicit approaches do. Furthermore, using a preclassified volume to
represent the TF information makes the network generally invariant to
the actual input modality and helps greatly in generalizing the approach
to different modalities, since only the structures of the new data are
unseen to the network, but not the general input scale.

On the other hand, the implicit approach steps away from the
paradigm of training neural nets on raw input data to learn their own
representations, instead of hand-engineering features for the network.
On top of that, the TF application can be expensive for large volumes
and the preclassified approach must always run the full network dur-
ing inference, which leads to increased running times and memory
requirements. Our explicit TF approaches can significantly save run-
ning time and, while they were less successful in our experiments,
similar techniques have achieved great success in generative tasks for
images [15, 21, 32]. Given that the explicit approaches have to solve
a significantly harder task, they might require larger networks with
more parameters to solve the volumetric AO task as well as the im-
plicit approaches. We hope to explore this in future work, when new
hardware enables the training of even larger networks. Training one
of the explicit approaches with sufficient quality might also enable
follow-up work, using the potentially very efficient TF representations
that are learned jointly to design new, or edit existing transfer functions
using the learned feature space, instead of using the intensity of a given
modality as input to the transfer function.
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(a) Magnetic Resonance Imaging

SSIM: 0.751, MSE: 0.021

(b) Electron Microscopy

SSIM: 0.869, MSE: 0.022

Fig. 7: Renders of MRI and EM modalities. The top row shows renders
without AO, the middle row shows renders with AO and the bottom row
shows the AO volume. Those renders demonstrate that our approach
generalizes to other modalities like MRI and EM, despite only being
trained on CT data. The MRI scan is from the brainweb dataset [10].

5.2 Comparison with Traditional Methods

Here we compare our approach with existing methods for volumetric
AO. Specifically, we chose to compare our method to the Local Ambi-
ent Occlusion (LAO) approach published by Hernell et al. [13], because
this approach directly produces an occlusion volume, like ours, and
thus we can compare occlusion volumes directly. Furthermore, LAO,
like our approach, only needs to be executed when the volume or trans-
fer function is changed. Since there was no implementation publicly
available, we re-implemented LAO in CUDA. For the experiment, the
volume resolution is again 1283 and the TF resolution is 4096.

Our time measurements include memory transfers of the inputs
and outputs for both techniques, accounting for a maximum of 8 ms,
which may be saved with further optimization. Table 3 shows how our
approach performs compared to LAO with different amounts of rays per
voxel. In terms of SSIM, our approach performs comparable with the
32-ray version of LAO, which takes around 111 ms to run, compared
to DVAO’s 411 ms. We also scaled up the number of rays such that
LAO takes roughly the same amount of time as our approach. With 190
rays, LAO takes 417 ms, while being very close to our ground truth
with a SSIM of 0.96 and an MSE of 8e−5. LAO reaches a relatively
low MSE with few samples, while the SSIM is still comparatively low.
Similarly, the qualitative comparison in Fig. 8 shows that LAO-32 still
has a lot of artifacts compared to DVAO, which performs quite similar
quantitatively. A more extensive qualitative discussion can be found in
the supplemental material. Lastly, we compared the approaches in terms
of memory usage. LAO requires 42 MiB of GPU RAM, compared
to our expensive neural net that requires 1322 MiB during inference.
Clearly, our approach is not yet competitive with existing techniques,
however we believe it is a good starting point for deep learning based
volumetric illumination, and has great potential to improve through
follow-up research.

Table 3: Comparison of our method with LAO [13]. We vary the
amount of rays used in LAO to compare running times for similar
quality (LAO-32) and quality with similar running time (LAO-190).

DVAO LAO-16 LAO-32 LAO-190

SSIM 0.81 0.74 0.83 0.96
MSE 7e-3 2e-3 7e-4 8e-5

TIME (ms) 411 87 111 417
VRAM (MiB) 1322 42 42 42

(a) DVAO (b) Ground Truth (c) LAO-190 (d) LAO-32

Fig. 8: Comparison of DVAO and LAO with different amounts of rays.

6 CONCLUSIONS & FUTURE WORK

In this work we show that neural networks are capable of learning volu-
metric illumination. We demonstrate this on the example of volumetric
ambient occlusion on a variety of modalities. Therefore, we compared
six different injection strategies for the incorporation of global infor-
mation, like a transfer function, which is in general not compatible
with CNN architectures, but is still required to solve most illumination
tasks. Based on our experiments with volumetric ambient occlusion,
we have derived guidelines for volumetric illumination learning, which
we believe to be also applicable in similar scenarios.

While our approach is not able to compete with algorithmic ap-
proaches for AO in terms of quality or performance yet, we see this
work as a starting point for future research in volumetric illumina-
tion using neural networks. From this starting point we hope to see
increased interest in DL-based volumetric illumination research, and
we believe with further advances in the field, DL-based approaches
might soon match or even surpass algorithmic approaches in terms
of quality. Future DL-based approaches might also extend to other
GI tasks and predict multiple effects simultaneously without funda-
mentally changing the network, providing a flexible tool for volume
rendering. While we do not expect DL-based approaches to be real-time
capable without significant graphics hardware advances, semi-real-time
implementations like DVAO, where re-execution is not required upon
view-change, may be beneficial in many scenarios. Furthermore, DL
approaches might be increasingly competitive in terms of running time
with increased complexity of the illumination task, where algorithmic
approaches have no real-time solution either, like multiple scattering.

Having explored design decisions for volumetric lighting with neural
nets in this paper, we will focus our future research on extending the
applications to a wider variety of GI effects, including higher frequency
effects that require the incorporation of additional unstructured global
information, like light sources and camera parameters. Additionally,
splitting volumes into smaller bricks might be an interesting direction
for future work to increase the resolution of the predictions. Lastly,
there is still further research needed on better transfer function repre-
sentations, since the currently best performing representation is very
expensive during inference. One possible direction for such a represen-
tation might be changing the transfer function input space to a jointly
learned feature space.
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