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A B S T R A C T

Scatterplots can be used for a wide range of visual analysis tasks, for example com-
paring correlations or variances of clusters across potentially multiple classes of data,
in order to find answers to higher-level questions. Comparing classes of data in one
scatterplot demands additional visual channels to encode this dimension. While percep-
tion research suggests colors as rather perceptually dominant, other studies show that
shapes can also be visually salient. However, with an increasing amount of data, over-
lapping shapes can cause perceptual difficulties and obscure data. Even though shapes
in scatterplots have been investigated extensively, the overlap between these shapes
has usually been avoided by using synthetic scatterplots. To overcome this limitation,
we investigate the perceptual implications of overlap when comparing data using scat-
terplots using a series of crowd-sourced user studies. These studies include common
visual analysis tasks, like comparing the number of points, comparing mean values,
and determine the set of points that is more clustered. To support our investigations, we
introduced and compared four metrics for overlap in scatterplots. Our results provide
insight into the overlap in scatterplots, recommend combinations of shapes that are less
prone to overlap, and outline how our metrics could be used to optimize future scatter-
plot design.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Scatterplots are widely used to visually explore and commu-
nicate abstract data. Oftentimes this involves dimensions of or-
dinal data, defining classes which observers would like to com-
pare against each other. For this comparison, the data is often
presented in a single scatterplot. But the ability to compare
classes in a single scatterplot depends on the given data. As the
data becomes more similar for example in terms of variance, or
with an increasing number of points, we obtain a larger amount
of overlap between points.
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This overlap of data points can hide data or introduce arti-
facts in certain arrangements of data points. Therefore, overlap-
ping data points influence the perception of an observer and can
thereby hinder the ability to find answers to an analytic ques-
tion. Additionally, the given task plays an important role, since
tasks like finding outliers in a set of points might not suffer from
high amounts of overlap, while it is difficult to identify clusters
under such conditions. This leads to a need for optimization
for a plot with respect to visual encodings, such as used shapes
and their size, to enable observers to explore the data and find
answers to analytic questions.

Although there is research on how to optimize scatterplot
design in terms of overdraw, existing approaches are limited
on for example only adjusting marker opacity [1]. Micallef
et al. [2] introduce an approach to optimize marker size and
marker opacity by using a cost function but limit their approach
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to using colors to encode different classes. Other research in-
tended to optimize scatterplot design with respect to the in-
tended tasks [3, 4, 5], or by using animation to try to alleviate
overdraw by constantly redrawing points over existing ones [6].

Perception research suggests that color hue is a visually dom-
inant channel [7, 8]. However, recent work shows that shapes
can also be a viable choice to encode categorical variables in
scatterplots [9, 10, 11]. Since these shapes need to be relatively
large to be distinguishable, shape overlaps become likely, es-
pecially for datasets containing a large number of data points.
Overlapping shapes may also result in perceptual difficulties,
such as occluded data or false positives. These kinds of percep-
tual difficulties can also lead to situations where certain arrange-
ments of shapes lead to the formation of artificial new shapes
(for example multiple plus symbols forming a square shape)
which can not appear when only using one kind of shape in dif-
ferent colors. While other 2D scatterplot parameters, such as
shape size [12] and shape color [13] have been investigated ex-
tensively, the overlap between shapes in a scatterplot has, to our
knowledge, not been considered in depth yet. Furthermore, we
see a lack of a concrete measurement of overlap appearing in
a scatterplot, especially with a focus on human perception. So
to support our research on shape overlap, we investigated three
different measurements for overlap and compared their ability
to support the prediction of human perception.

Since previous work could show that results of perceptual ex-
periments can be used to predict human perception [14, 15, 16],
we conducted a series of six user studies to evaluate which of
our metrics could serve as a valuable predictor. To do so, we
used Amazon’s Mechanical Turk platform (MTurk) since it of-
fers a large and diverse pool of participants [17, 18, 19]. Since
all of these participants are not in a typical laboratory environ-
ment, such crowd-sourcing studies nicely reflect the variety of
conditions under which users would inspect a visualization. We
selected three common tasks based on previous work related to
2D scatterplot interpretation for our experiments. These tasks
include judgments of the comparison of the number of shapes,
the comparison of variance of sets, and the comparison of av-
erage value. Within our experiments, we have investigated a
set of six different shapes, two different sizes of shapes, and
a broad variety of overlap conditions reaching from almost no
overlap to heavy overlap. Finally, we show how our findings
can be used to optimize future, unseen scatterplots to improve
the ability to solve a given task.

The remainder of this paper is structured as follows. First, we
discuss work which is related to our investigations in Section 2,
before we discuss our overlap measurements in Section 3. Sec-
tion 4 outlines the methods used in our experiments, followed
by three sections presenting the results. Afterwards, we evalu-
ate our metrics in Section 8 and present direct implications on
scatterplot design in Section 9. Finally, Section 10 concludes
the paper and outlines possible future extensions of our investi-
gations.

2. Related Work

The perception of shapes and the contrast between shapes
have been investigated in previous work [20, 21]. Additionally,

the usage of shapes in two-dimensional scatterplots has been in-
vestigated [10, 11], but so far overlap between shapes has been
avoided through synthetic data generation.
Shapes in 2D scatterplots. When using shapes to encode ad-
ditional dimensions within 2D scatterplots, it is required that
these shapes are visually separable. Demirlap et al. [20] intro-
duced distance matrices for perceptual judgments called per-
ceptual kernels. To derive these matrices they conducted a set
of crowd-sourced experiments on the MTurk platform. Com-
parison tasks between shapes, colors, sizes, and combinations
thereof were investigated by using five different tasks. These
tasks included pairwise comparison using two different Likert
scales, triplet ranking with matching, as well as discrimination,
and spatial arrangements. Based on the obtained results, they
propose a metric that encodes the perceptual distance between
for example different shapes, colors, and sizes of shapes.

To investigate which pairs of shapes offer good visual separa-
bility, Tremmel conducted two experiments [21]. He compared
filled and non-filled shapes, as well as different types of circles
with, for example, crosses or dots in the center, together with
a plus shape and an asterisk. For his experiments, he created
different synthetic scatterplots containing two shapes. He fur-
ther ensured that the individual shapes are not overlapping by
requiring a minimum distance between each of them. One of
the shapes appeared more often, such that the task was to find
the shape which appears more often. Tremmel’s results indi-
cate that a combination of filled and non-filled shapes provide
a good visual separability. But he also found that shapes with
different numbers of terminators (for example four terminators
of a plus ( ), or six terminators of an asterisk ( )) can be sepa-
rated well.

Li et al. [10] investigated the effect of shape and size on
the perception of scatterplots. To do so they conducted a user
study including different tasks, where they for instance esti-
mated which shape appears more often, identified outliers, and
determined which shapes are more clustered. Thus, for gener-
ating their test stimuli, they divided the scatterplot area into a
uniform grid and placed the shapes into randomly selected cells
to prevent overlapping shapes. Their results indicate a good
visual separability between polygon- and asterisk-like shapes.

Finally, Burlinson et al. [11] could show, that shapes such as
squares, triangles, circles, asterisks, plus- and cross-shapes can
indeed be used for tasks like counting the number of elements
and guessing the average of a cluster. They divided these six
shapes into the classes open and closed, where squares, trian-
gles, and circles are considered closed shapes while all the re-
maining are considered open shapes. To generate their plots,
Burlinson et al. used an approach introduced by Gleicher et
al. [22] which prevents overlapping shapes. Under these over-
lap avoiding conditions, they found that using two shapes from
the same category causes a significant effect on response times
as well as error rates when compared to using shapes from dif-
ferent categories. Furthermore, they found, that open shapes
seem to be a better choice to be used as target shapes.
Overlap in 2D scatterplots. Mayorga and Gleicher [23] pro-
posed Splatterplots, an enhanced presentation of scatterplots
which tries to solve the problem of overlap. These Splatterplots
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abstract the presentation of dense regions in scatterplots into
color coded contours while keeping outliers as single points.
Splatterplots work well even for millions of data points, but
require interactions such as continuous zoom to reveal the ac-
tual data. Another technique of preventing overlap in scatter-
plots was developed by Keim et al. [24]. Their approach tries to
minimize the overlap in a plot by distorting the scales of a two-
dimensional scatterplot. The user can freely distort the plot until
an optimal trade-off between distortion and overlap is achieved.
While they propose techniques to automatically optimize plots,
distorting the data can introduce unwanted relations.

Urribarri and Castro [25] recently developed a metric to mea-
sure the number of shapes that are not completely overlapped
by other shapes. They show how to use this metric for differ-
ent shapes and how a scatterplot can be optimized using their
metric. However, the proposed metric only calculates the to-
tal amount of completely hidden shapes in a scatterplot. This
is especially problematic when using filled shapes which are
relatively large. Under this circumstance, the amount of com-
pletely hidden shapes becomes a problem. Furthermore, shapes
that are only overlapping partially are not considered by their
metrics, and the actual influence on the perception of overlap is
also neglected.

Related works by Matejka et al. [1] and Micallef et al. [2] try
to improve the appearance of scatterplots by adjusting the size
and opacity of data points. While this approach does maintain
the general distribution of points and does support users to find
regions where points are really clustered, it is difficult to apply
this approach when using different shapes to encode classes. As
the overdraw increases, and therefore the opacity of individual
points decreases, it becomes more and more difficult to distin-
guish between points.

Furthermore, Chen et al. [6] introduced an approach to over-
come overplotting by using animation and iteratively redrawing
points on top of existing ones. This makes cluttered regions in
the plot easy to detect, but this approach does not work in en-
vironments where animations can not be used, for example for
printed plots.

3. Overlap Calculation

To be able to estimate the degree of overlap present in a 2D
scatterplot, an appropriate metric is needed in order to investi-
gate the influence on human perception. These metrics should
further serve as an additional predictive variable in our investi-
gations and help to understand the general amount of overlap.
Although we suppose that a more precise measurement leads
to better predictive performance, we tried to find some viable
simplifications which may also lead to viable predictive perfor-
mance using our model. Therefore, we compared four different
metrics using the acquired data from our user studies.

We have not considered the metric proposed by Urribarri
and Castro [25], which measures the amount of data that is to-
tally hidden by other shapes since it assumes that scatterplots
use filled shapes. Furthermore, the goal was to focus on over-
lap instead of hidden data, which can nicely be done by the
four metrics discussed in the following paragraphs. Also, algo-
rithms which depend on convex hulls are not viable, since we

(a) (b) (c)

Fig. 1. Examples of overlap appearing between different combinations of
two shapes. Shapes are drawn with a pixel size of fifteen and a line width of
one. The overlap is measured by using all three of our introduced overlap
measurements, where Mpix measures on a pixel based level, Mnum counts
the number of overlapping shapes based on a bounding circle, and Mrel ad-
ditionally takes into account how much these bounding circles overlap.
This would produce the following overlap measurements: (a) Mnum = 1.0,
Mrel ≈ .29, Mpix ≈ .02, Mshape ≈ .02; (b) Mnum = 1.0, Mrel ≈ .29, Mpix = 0,
Mshape = 0; (c) Mnum = 1.0, Mrel ≈ .67, Mpix ≈ .12, Mshape ≈ .55.

then would need to come up with an artificial hull for our open
shapes. Therefore, we also decided against different kinds of
collision detection algorithms, which rely on convex hulls, like
the algorithm introduced by Gilbert et al. [26].

3.1. Discusssion of Metrics

Our goal was to find a measurement for overlap in scatter-
plots. Therefore, we decided to use a pixel-precise measure-
ment as our baseline metric, before trying to find other metrics
which might reflect human perception in a better way. The most
precise way of measuring overlap in scatterplot would be to just
count the number of pixels of a shape that is overdrawn by other
shapes.

While we hypothesize that this is the most precise way of
measuring overlap, we also suspect that this metric does not
serve as a good measurement of overlap on a perceptual level.
For example, when two open shapes like the asterisk ( ) and
the plus ( ) overlap each other, there are cases where the shapes
are not overlapping on a pixel level, but humans might perceive
these shapes as overlapping and having trouble in separating the
shapes. Therefore, we came up with a second metric that mea-
sures the overlap between shapes using bounding circles, where
we just count the number of overlaps between the bounding cir-
cles. We choose the size of the bounding circles to be of the
size of the shape. This means for a square ( ) with a width and
height of seven pixels, we used a bounding circle with a radius
of seven pixels. While this introduces false positives, we sus-
pect this metric to reflect the human perception in a better way
than the pixel precise measurement, especially when shape size
decreases. Figure 1b shows an example of such a false positive
measurement.

This second metric, however, does not take into account how
much two shapes are actually overlapping. To overcome this
limitation, we came up with a third metric which does include
these criteria. In doing so, a plot where all of the shapes are
just slightly overlapping would produce a different amount of
measured overlap, when compared to a plot where all the shapes
are overlapping a lot.

So in the end, we came up with the following metrics:
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Mpix : Pixel-based overlap. For this metric we rendered the
scatterplot and the shapes appearing in our plots and counted
the number of pixels for the individual shapes. We then used the
plots generated for the conducted experiment, where we know
how many points are shown and which shape they are using.
Using this information we can compute how many pixels in a
given plot should be occupied by shapes. Afterwards, the num-
ber of used pixels in the scatterplot can be used to calculate the
number of pixels that appear to be overdrawn. Since our closed
shapes are drawn to be transparent in the center, such a shape
only occupies the number of pixels used for the outline of the
shape.
Mnum : Number of bounding circle overlaps. For this metric,
we simply count the number of overlapping shapes by using
a bounding circle for each shape. To do so, we calculate the
distance between each of the data points to all other points while
excluding already compared pairs. If the distance between two
points was smaller than the size of a shape, we found an overlap.
In the end, we normalized this number by dividing through the
total number of possible overlaps.
Mrel : Relative bounding circle overlaps. We created a special
version of our bounding circle overlap test (Mnum ), in which we
also calculated to which degree the bounding circles overlap.
Calculating the percentage of overlap between each individual
shape offers the possibility to have a more precise measurement
of interactions between shapes. We again compare each point
with each other (excluding already tested pairs). If we find an
overlap, we compute the percentage of overlap by dividing the
distance through the size of the shape and subtract this from
one. To compute the final result for the complete plot, we cal-
culated the mean of all the overlaps measured.
Mshape : Shape-based overlap. For our final metric, we in-
tended to focus on the overlap between individual shapes and
the way they interact with each other. We, therefore, rendered
all combinations of all shapes and used one shape as a sliding
occluder for the other shape in a way that we ended up with all
possible (pixel-precise) constellation between the two. After-
ward, we calculated the number of overdrawn pixels for each
of these constellations so that we end up with a value of over-
lap depending on the relative position between the two shapes.
These values are then normalized from the minimum (which
is always zero) and maximum possible overlap for a pair over
all constellation to the range of zero and one. Finally, to use
this metric for our scatterplots, we computed the overlap for the
complete plot and calculated the mean.

Figure 1 shows a comparison of overlap when measured with
the four proposed metrics, and Figure 2 presents overlap mea-
surements from four of our used stimuli.

4. General Methods

To investigate the perceptual influence of overlap in scatter-
plots, we conducted six experiments. To be broad wrt. shape
and task, we have used three different visual analysis tasks and
two different shape sizes. The general approach which all of
the experiments have in common is described in the following
sections.

4.1. Task Selection

For our investigations on the effect of overlap, we selected
tasks with a focus on the comparison between classes from the
task definitions for scatterplots by Sarikaya and Gleicher [3],
which have also established by previous work. From their clas-
sification, we decided to use tasks from the aggregate-level cat-
egory. This category describes tasks, which are common when
answering higher level questions by aggregating sets of data
points. We did not use tasks that are based on finding outliers
since they are not prone to overlap. Furthermore, we decided
against using a task involving the comparison of correlation.

We found, the task of finding and comparing average val-
ues is easier to communicate in a crowd-sourced environment,
where people do not necessarily have an understanding of the
abstract concept of a correlation. Furthermore, we argue that
perceiving correlations is less prone to overlap since it just re-
quires the perception of the outer shape of a set of points, rather
than perceiving individual shapes.

Besides that, our goal was to use tasks which do enable par-
ticipants to answer a given question rather quickly, rather than
having to investigate the plot over longer periods. Thus, we
decided to use the following tasks.
Comparing Number of Shapes. Within this task, users are
confronted with 2D scatterplots containing two types of shapes,
and they have to decide which shape appears more often.
This task does not only fulfill all our criteria for a large scale
user study, but it has also been extensively used in previous
work [12, 11, 10, 21], which makes our results transferable.
Comparing Variance. During the second task, users are also
confronted with 2D scatterplots containing two different shapes,
but now they have to determine which set of shapes is more
clustered and thus has a smaller variance. Again, this task ful-
fills all our task requirements and has been used in previous re-
search [12, 10]. Like in previous work, we also choose the more
clustered shape as target, since we suspect this shape to suffer
more from overlap than the shape with the larger distribution.
Comparing Average Value. Within the third task, we ask the
study participants to judge which of the two displayed sets of
shapes has a higher average y-coordinate. Again, the task in-
volves the comparison between two sets of shapes and has also
been used in previous work [22, 11]. Furthermore, we decided
to use this task, since, in contrast to the first two tasks, this task
involves visual aggregation in a way that the observer computes
the aggregated properties over a collection of points. Such an
aggregation and the comparison between the results of such ag-
gregations are common as it corresponds to many decisions like
if there is one class in the data that is better than another. How-
ever, in contrast to the first two tasks, this task is rather complex.
We, therefore, included additional control questions during our
user study to ensure the quality of the results.

4.2. General Stimuli Generation

Previous work suggests that a combination of open and
closed shapes works well in terms of distinctiveness [11].
Based on this finding and the distinctiveness of shapes predicted
by Demiralp’s perceptual kernels [20], we decided to include
the following six shapes: circles ( ), squares ( ), triangles ( ),
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(a) Low overlap (b) Medium low overlap (c) Medium high overlap (d) High overlap

Fig. 2. Comparison of different amounts of overlap, appearing in our scatterplots. (a) shows an example of one of the lowest overlap measurements
(Mnum ≈ .0097, Mrel ≈ .0025, Mpix ≈ .0089) we used in Experiment 1, while (d) shows an example of one of the highest overlap measurements (Mnum ≈ .062,
Mrel ≈ .0211, Mpix ≈ .1548). (b) shows medium low overlap with Mnum ≈ .017, Mrel ≈ .0055, Mpix ≈ .0561, while (c) shows medium high overlap with the
following measurements: Mnum ≈ .049, Mrel ≈ .0162, Mpix ≈ .1202.

crosses ( ), pluses ( ), and asterisks ( ). While circles ( ),
squares ( ) and triangles ( ) are considered to be closed shapes,
crosses ( ), pluses ( ), and asterisks ( ) are open shapes. Each
shape was presented as a target shape together with one distrac-
tor shape, whereby we have realized all possible combinations
thereof.

Even though we think that using more than two shapes to-
gether in one plot would lead to interesting effects, for example
when using cross ( ), plus ( ), and asterisk ( ) together, we
decided against going beyond a two-way comparison by adding
another distractor class. Using more than two shapes at a time
(and all the combinations thereof) would open up a space of
combinations that would go beyond what would be manageable
in a user experiment. This is especially true considering all the
other parameters we would like to investigate during our exper-
iments.

During the study, each of the scatterplots showed a total of
100 data points divided into two sets where each set was en-
coded using a different shape. We chose normal distributions
to generate our pointsets because these are frequently used as
they underlie many natural phenomena. Although we used a
normal distribution for all our pointsets, the average task, as
well as some combinations in the other tasks, use a distribution
with a wider spread where the resulting pointset spreads evenly
over the canvas. In doing so we cover a wide range of different
point distributions ranging from even spreading over the canvas
down to heavy amounts of overdraw. The normal distribution
was generated by using a pre-defined seed, to ensure the re-
producibility of our pointsets. We further verified that in all
generated pointsets all of the shapes are completely shown on
the canvas, such that they are not clipped by the border.

We further chose to use variance as a helper to generate dif-
ferent amounts of overlap indirectly. Rensink and Baldridge
used a method of generating just-noticeable-difference staircase
approach to generate stimuli to investigate correlations in scat-
terplots [27]. While this is a viable approach which could have
been adopted to generate different amount of overlap, we de-
cided to use fixed amounts of variances to generate our stimuli.
The main reason for this is, that we already include a rather

(a) Large Variance (b) Medium Variance (c) Small Variance

Fig. 3. Comparison of variances used in Experiment 1 (count task, big
shapes). (a) shows an example of the large variance for both shapes. (b)
shows an example of the medium variance for both shapes, while (c) shows
the small variance for both shapes.

large number of variables in our experiments, and we also re-
peated each target-distractor condition using each variance with
a different seed. By doing so, we also generated a continuous
variance in overlap appearing in our stimuli. Besides that, our
focus was to find combinations which are less prone to overlap.
Having combinations of shapes that show promising results in
our studies, could then be used in further studies, using such a
stair-case approach to further investigate the interaction of over-
lap and shapes.

In general, we used three different variances, that were cho-
sen in a way that the largest variance produces plots in which
the shapes are almost evenly distributed over the entire canvas.
The smallest variance produces distributions that are just big
enough such that the shapes are still visible. The third variance
was chosen to be in between the smallest and the largest one.
Concrete values of means, covariances, and seeds for the ran-
dom generation, used throughout our experiments can be found
in the supplementary material. Figure 3 shows a comparison of
our used variances.

The closed shapes ( , , and ) were drawn with a transpar-
ent center because filled shapes would introduce an additional
variable to reflect the order in which the different shapes are
drawn, which directly affects the overlap. Furthermore, draw-
ing open shapes, like for example a plus, in front of a filled
closed shape, for example, a circle would end up in the same re-
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(a) Big shapes (b) Small shapes

Fig. 4. Comparison of shape sizes used in our experiments. (a) shows an
example of our big shapes with a pixel size of fifteen pixels, while (b) shows
an example of the small shape size of seven pixels. Both examples are taken
from our experiment involving the comparison number task. For both ex-
amples circle is the target shape while cross is the distracting shape.

sult as using transparent closed shapes. All shapes were drawn
with the center of mass on the actual data point. This means
a triangle is slightly shifted into the positive y-axis when com-
pared directly to for example a square or a circle. Also, the
shapes are drawn so that they are about equal in terms of area.
This means when comparing a square to a circle, the circle takes
up slightly more space along both x- and y-axis. The open
shapes ( , , ) were drawn in a way so that they would fill
the circle shape with their line endings and therefore also take
up an equal amount of space. This was done to ensure that each
of the shapes had a similar strong perceptual impact and this
way was about equally salient. The outlines of our shapes were
drawn with a line width of one, while the canvas was chosen
to be white and 400 by 400 pixels in size, as it should work on
all modern desktop computers and was also used in previous
studies [22].

For each of the tasks described above, we conducted two ex-
periments. In a first experiment, we used a pixel size of fifteen
pixels for the shapes and in a second experiment, we used a
pixel size of seven pixels. These sizes were chosen, since seven
pixels mark a lower limit in terms of usability, while fifteen
pixels mark an upper limit. If we would draw shapes smaller
than seven pixels in size, the square ( ) and ( ) become hard
to distinguish. Also, at a shape size smaller than seven pixels,
the asterisk ( ) is starting to become a filled square symbol and
does almost take up the complete area. Shapes bigger than fif-
teen pixels also do not seem usable when drawn on a canvas
with 400 pixels in size. Also, fifteen pixels have been chosen,
since it doubles the size of the small shape size while still hav-
ing an exact center for the shapes since fifteen is an odd number.
Figure 4 shows a comparison of our used shape sizes.

To draw the plots for our online survey, we used Data-Driven
Documents (D3) [28], which uses the ability of the browser to
render SVG images, and thus can be used to generate vector-
based plots. The Figures 2, 3, 5, 6, and 7 show examples of the
used plots.

(a) Easy Task (b) Medium Task (c) Hard Task

Fig. 5. Examples of stimuli, as used in Experiment 1 (count task, big
shapes). For all shown plots, circles are the target shape, while pluses are
the distractor. The easy task shows 68 circles and 32 pluses, the moderate
task shows 63 circles and 37 pluses, and the hard task shows 58 circles and
42 pluses.

(a) Large vs. medium (b) Large vs. small (c) Medium vs. small

Fig. 6. Examples of stimuli, used in Experiment 3 (variance task, big
shapes). For all examples, asterisk is the target, while plus was used as
a distractor. (a) shows an example where the target shape uses the large
variance and the distractor shape uses a medium variance as described in
Section 4.2. (b) shows a large variance for the target shape and a small
variance for the distractor, while (c) uses our medium variance for target
shapes and small variance for distractor.

4.3. Task Based Experimental Design

Based on the general method for stimuli generation, we have
generated scatterplots for all three tasks. Within this subsection,
we describe how these stimuli vary wrt. task, and discuss the
combinations of parameters as used in our user studies.
Comparing Number of Shapes. As described in Section 4.1,
in this task participants had to rate which shape appears more
often in a scatterplot. We divided 100 data points into two
groups with different deltas between the groups to generate
easy, medium and difficult tasks. The actual deltas have been
adopted from Burlinson et al. [11]. So for easy tasks, we
used 68 shapes for the target set and 32 distracting shapes, for
the moderate task we used 63 target shapes and 37 distracting
shapes, and for the hard task, we used 58 target shapes and 42
distracting shapes. To generate different amounts of overlap
between shapes, we used three different variances as described
earlier. We used the same variances for both, the set of target
and the set of distracting shape and also for both the x- and the
y-axis. For all of the normal distributions, the mean was cho-
sen to be in the center of the canvas. Using each of the shapes
as a target (6), all other shapes as distractor (5), three different
task difficulties (3), and three different variances (3), we created
270 different combinations. For each of these combinations, we
created three scatterplots, where each of them uses another seed
for the normal distribution. This way we were able to have the
same combinations with different amounts of overlap and added
repetition to our stimuli combinations. By doing so, we created
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a total amount of 810 stimuli for the comparison of number of
shapes task. Figure 5 shows examples of stimuli used for this
task.
Comparing Variance. Within this task, participants must
judge which set of shapes shows a smaller variance and there-
fore is more clustered. We again divided 100 data points into
two groups but used two equally sized groups for this task. To
generate different task difficulties we used three different com-
binations of variances. Large vs. medium variance to generate
a plot with a low amount of overlap, medium vs. small variance
to generate a plot with a high amount of overlap, and large vs.
small variance to generate a medium amount of overlap. The
mean of the normal distribution was chosen to be in the center
of the canvas. Using each of the shapes as target (6), all other
shapes as distractor (5), and our variance combinations (3) we
generated 90 combinations. We again repeated each combina-
tion using three different seeds for the normal distribution to
generate a total of 270 stimuli for the comparing variance task.
Figure 6 shows examples of stimuli used for this task.
Comparing Average Value. In this task, participants were
asked to judge which set of shapes was on average higher in
the y-axis. Again we used 100 data points, divided into two
equally sized groups. Burlinson et al. used a dart-throwing
approach [29] to generate datasets without overlapping shapes
which they used as stimuli in their user study. Since our exper-
iments focus on overlap, we instead also used a normal distri-
bution to generate stimuli for this task. To achieve a uniform
distribution of the points over the complete canvas, we used a
large distribution for both of the sets. Different task difficulties
are generated by adopting the approach of Gleicher et al. [22]
where the distance along the y-axis between the means of two
sets is measured. This distance parameter is called ∆. We also
adopted the ∆ values reported by Gleicher et al.: 8, 16, 24, 32,
40, and 80 as used for control questions. We used different
means for the normal distribution to generate pointsets with the
desired amount of offset along the y-axis between the clusters.
After generating the pointsets, we ensured that we obtain the
correct distance between the sets by calculating the given aver-
age and offsetting the points to the desired distance in averages.
So by using all of the shapes as target (6), all others as distractor
(5), and our ∆ values (6) we have generated 180 combinations,
resulting in 540 stimuli for this task, as we again use three dif-
ferent seeds for each combination. Figure 7 shows examples of
stimuli used for this task and compares the different ∆ values
used to vary difficulty.

4.4. Procedure

Each of the conducted experiments, started with a demo-
graphic questionnaire, followed by an introduction to the task.
This introduction included five examples of plots similar to the
ones used in the study with an explanation of the task. After the
introduction, the participants completed five practice trials to
get used to the tasks. The stimuli for the introduction as well as
the practice trials were generated by using configurations which
were also used in the study, but using custom seeds to create the
normal distribution. This way we ensured that none of the ex-
ample or training stimuli appear in the study.

∆ = 8 ∆ = 16 ∆ = 24

∆ = 32 ∆ = 40 ∆ = 80

Fig. 7. Examples of stimuli, used in Experiment 5 (average task, big
shapes). For all plots, triangles are the target shape, while the asterisk was
used as a distractor. Task difficulty was varied using different distances
between averages (∆), reaching from 8 pixel to 80 pixel. For all examples,
the triangle was used a target shape, while the asterisk symbol was used as
a distractor.

For each of the stimuli, the participants had to answer by
pressing the “f” or “j” key, such that they could rest their hands
on the keyboard comfortably. Each of the keys showed the
shapes assigned to the key, which were randomly assigned to
one of these keys. The participants were instructed to respond
to the stimuli as quickly as possible while still making sure to
give the correct answer. By instructing to answer as fast as pos-
sible, while still making sure to give the correct answer, we tried
to make participants answer based on their intuitive decisions.

In our introduction, we explained our task before giving ex-
amples including an explanation of the shown plot and a hint to-
wards the correct answer. If a participant answered incorrectly,
we showed additional explanations instructing the user to press
the correct key. Before the stimuli were presented, a fixation
screen containing a plus shape in the center of a white canvas
was shown for a random time of 500, 600, 700, 800, 900, or
1000 milliseconds. We adopted this approach from Burlinson
et al. [11] to prevent the participants getting used to the timing
and just clicking through the survey. The response time was re-
stricted to ten seconds to prevent the user from solving the task
by for example counting the shapes on the screen. If a partici-
pant exceeded this time restriction, the response was discarded
and a red error screen was shown instructing the user to answer
more quickly.

4.5. Participants

Over all our studies we recruited a total of 624 participants
(258 female, 360 male, 2 other, 4 did not report, Mage = 33.70,
S D = 10.55). We had to exclude a total of 46 participants due
to poor performance in terms of accuracy, or failing in control
questions as used in the study. To compensate for learning ef-
fects, for each of the six individual experiments we excluded all
participants from previous experiments.
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5. Comparing Number of Shapes Experiment

To investigate the perception of the comparing number of
shapes, we have conducted two experiments with two different
shape sizes. Within this section, we first describe the methods
used in these experiments, before analyzing the results.

5.1. Methods

As described in Section 4.2, we used big and small shapes
in our studies, which is also the difference between the two ex-
periments conducted for this task. Thus, in Experiment 1 we
used big shapes, while Experiment 2 used small shapes. The
procedure of both experiments follows the description provided
in Section 4.4. To reduce the workload of the individual partic-
ipants, we divided all 810 stimuli randomly into ten groups, so
that each participant had to rate 81 stimuli. This way we limited
the length of each survey to about 10 to 15 minutes to ensure
quality and motivation of participants [18].

In Experiment 1, where we used big shapes with a pixel size
of fifteen pixels, 115 participants took part. We had to discard
the responses of four participants, due to high error rates (>
50%). Thus, we analyze data from 111 participants (52 female,
58 male, 1 did not respond).

For Experiment 2 we used small shapes with a pixel size of
seven pixels. We excluded all participants of Experiment 1 from
this experiment. In Experiment 2, we acquired data from 110
participants and had to exclude five participants because of high
error rates (> 50%). Therefore we present the results of 105
participants (42 female, 63 male).

5.2. Analysis

After providing an overview of the acquired user feedback,
we analyze which combinations of shapes resulted in the best
accuracy within this section.

5.2.1. Data Description
Overall participants showed a mean accuracy of 73.57%

(S D = 8.80%) of correctness answers for Experiment 1 and
71.89% (S D = 9.54%) for Experiment 2. Only 0.25% of the
trials ran into the time out for Experiment 1 and 0.29% for
Experiment 2. Response times over participants were lower
in the experiment using the small shapes (M = 1770.88ms,
S D = 1293.97ms) when compared to the experiment using the
big shapes (M = 1915.04ms, S D = 1300.42ms). We hypothe-
sized this effect, because larger shapes result in a larger amount
of overlap, making the task more difficult. Using Friedman’s
ANOVA we tested the effect of intended task difficulty on par-
ticipants’ accuracy and found a significant effect for both exper-
iments (Experiment 1: χ2(2) = 67.12, p < .001; Experiment 2:
χ2(2) = 71.93, p < .001).

5.2.2. Shape Effects
To analyze the effects of individual shapes, we compared

all combinations of shapes used in both experiments using this
task. Figure 8 shows a comparison between a selection of the
best and the worst combinations in terms of accuracy. Without
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Fig. 8. Accuracy while overlap increases for the experiments involving the
comparing number of shapes task. We show logistic regression curves for a
selection of shape combinations which showed overall best and worst per-
formance. Overlap was measured using our pixel-based metric Mpix .

any further statistical analysis, we found that there are combina-
tions that seem to work much better than others. Our measured
accuracies for combinations of target and distractor shape var-
ied between around 90% accuracy for our best combinations
( / , / ) down to around 50% for some of the worst com-
binations ( / , / ). While these results overall indicate
that findings of Burlinson et al. [11] also hold for conditions
where shapes overlap, there are also interesting outliers like the
triangle ( ) vs. square ( ) or asterisk ( ) vs. plus ( ) combina-
tions which exhibited very high accuracies under the comparing
number task.

Furthermore, we investigated which combinations of shapes
suffered stronger from overlap than others. In Figure 8, we
present a selection of combinations for target and distractor
shapes as used in this task. The figure shows logistic regres-
sion curves of accuracy for these combinations.

The combinations have been selected based on if they either
showed good or bad accuracies in this task, as also shown in
Table 1. Additionally, we selected combinations where the in-
crease of overlap showed a strong incfluence on accuracy. The
regression lines in Figure 8 shows that for example the com-
bination of triangle ( ) and asterisk ( ), as well as plus ( )
and asterisk ( ), suffer drastically from an increasing amount
of overlap. In these cases, the accuracy drops below the accu-
racy of chance, indicating that the asterisk shape has a strong
influence when used as a distractor. This influence seems to in-
dicate that the asterisk makes the set appear to have more points
than it has.

We investigated if our used shape sizes had an effect on par-
ticipants’ performance in terms of accuracy using Wilcoxon
rank-sum test. This test was used since our accuracy data
failed a statistical test on normal distribution. When compar-
ing the results of our experiment using the number of shapes,
we found no significant difference between our experiments
(W = 6454.5, p = .17).
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6. Variance Task Experiment

Using this second task we investigated the influence of over-
lap on the estimation of variance. Again, in a first experiment
(Experiment 3), we used big shapes while in the second ex-
periment (Experiment 4) we used small shapes as described in
Section 4.2. We again first describe our used methods, before
discussing our results.

6.1. Methods

The experiments for the variance task was also set up as de-
scribed in Section 4.4. The generated 270 stimuli were ran-
domly divided into five groups, so each participant had to rate
54 stimuli. We again conducted two disjunct experiments,
where all participants of previous experiments where excluded
from subsequent experiments. Experiment 3 (using big shapes)
has been conducted by 58 participants, of which we had to ex-
clude eight participants because of high error rates (> 50%).
The experiment using the small shapes (Experiment 4) has been
conducted by 68 participants. Here we had to exclude five par-
ticipants because of high error rates (> 50%). So we present
data of 50 participants (24 female, 24 male, two preferred not
to answer) for Experiment 3, and 63 participants (28 female, 35
male) for Experiment 4.

6.2. Analysis

We again describe the overall performance of our participants
before analyzing which shapes appear to work better for the
given task.

6.2.1. Data Description
For this task, our participants overall showed the best accura-

cies when compared to the other conducted experiments. Over
our two experiments, participants show almost exactly the same
performance for the experiment using the small shapes (M =

79.19%, S D = 11.12%) and for the big shapes (M = 79.18%,
S D = 13.24%). Among all responses, .34% of the trials timed
out using the big shapes, and .27% using the small shapes,
while the response times were lower using the big shapes (M =

1919.26ms, S D = 1393.95ms) as compared to when using the
small shapes (M = 2163.56ms, S D = 1466.10ms). We used
three different combinations of variances to generate tasks with
different difficulties and amount of overlap. We found that these
combinations of variances as shown in Figure 6 had a signifi-
cant effect on accuracy for both of our experiments using this
task (Experiment 3: χ2(2) = 39.46, p < .001; Experiment 4:
χ2(2) = 41.13, p < .001).

6.2.2. Shape Effects
Investigating our results wrt. used shapes, we again found

large shape dependent accuracy differences. As for our experi-
ments using the comparing number task, we found that the com-
bination of asterisk ( ) and square ( ) showed the best accuracy
(92.6%). Using the same combination of shapes, but square as
target and asterisk as distractor, however, showed one of the
worst performances in terms of accuracy using the variance task
(71.2%). Also, we found again that the asterisk ( ) vs. plus ( )
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Fig. 9. Accuracy while overlap increases for the experiments involving the
variance task. We show logistic regression curves for a selection of shape
combinations which showed overall best and worst performance. Overlap
was meassured using metric Mpix .

combination works really well in terms of accuracy with 88.6%
of correct answers using this combination, indicating that there
are indeed some combinations which seem to be an outlier from
the open and closed categories [11]. Figure 9 shows a com-
parison of a selection of combinations of target and distractor
shapes using this task. As in Section 5, we again, present com-
binations that showed good or bad accuracies for this task. In-
vestigating combinations of shapes regarding overlap, we found
that in this experiment overall overlap was a less stronger factor
when compared to the count task based experiments. We sup-
pose these results to happen because stimuli in this task overall
showed less overlap since one of the sets needed to show at least
a medium large variance. We again compared both of our ex-
periments using the Wilcoxon ranked-sum test, and again found
no significant difference on participants’ accuracy when using
different sizes of shapes (W = 1613.50, p = .83).

7. Average Task Experiment

For this final task, we also conducted two experiments us-
ing two different shape sizes. In the following subsections, we
again first present an overview of the used methods before dis-
cussing our results.

7.1. Methods
The experiments for the average task were also set up as de-

scribed in Section 4.4. Again, we conducted two experiments,
one using big shapes (Experiment 5) and one using small shapes
(Experiment 6). We randomly divided our 540 stimuli into nine
groups, so that each participant had to rate 60 stimuli.

Again we excluded all participants from our previous exper-
iments, as well as participants of Experiment 5 for Experiment
6. The experiment involving the big shapes (Experiment 5),
was conducted by 145 participants, while 137 participants con-
ducted Experiment 6 investigating the small shapes. For this
task, we had to sort out a relatively large number of participants



10 Preprint Submitted for review / Computers & Graphics (2020)

as they failed in our control stimuli. Out of the 145 participants
in Experiment 5, 34 participants failed in more than 50% of the
control stimuli, while for Experiment 6, 47 out of 137 partic-
ipants failed this condition. However, we suspect participants
failing the control questions did not understand the task well
enough to solve it. We suspect this happens since these tasks
are harder to understand and requires a deeper understanding of
the plot when compared to the first two tasks.

Even though we needed to exclude a large number of partic-
ipants, we could still ensure that at least 10 participants were
acquired for each of our nine groups. Therefore, we present
the results of 111 participants (40 female, 70 male, 1 did not
respond) for Experiment 5, and 90 participants (39 female, 51
male) for Experiment 6. Again, for further analysis, the re-
sponses to our control stimuli were excluded.

7.2. Analysis

We first present an overview of our acquired data before com-
paring which combinations of shapes showed the best perfor-
mance for this task.

7.2.1. Data Description
Participants showed the worst performance in terms of ac-

curacy using this task. We suppose this to happen since this
task involves a higher level of understanding of the data when
compared to the judgment of how many shapes are shown,
or which shape has a wider spread over the canvas. For Ex-
periment 5, participants showed a mean accuracy of 69.07%
(S D = 13.41%), while for Experiment 6 the accuracy was
with 66.78% (S D = 15.12%) even lower. However, time outs
on this task were low again (0.37% for big shapes; 0.29% for
small shapes), indicating that the time restriction was appropri-
ate. For this task participants also showed the highest response
times when compared to the other tasks, which again indicates
that this task was more difficult. In our experiment using the
big shapes the response times where higher (M = 1991.32ms,
S D = 1580.62ms), when compared to using the small shapes
(M = 1783.34, S D = 1312.37ms). We again tested, if the used
difficulties had an influence on participants accuracy and found
significant effects for both of our experiments (Experiment: 5
χ2(4) = 112.93, p < .001; Experiment 6: χ2(4) = 39.213, p <
.001).

7.2.2. Shape Effects
We again compared how the used shapes affected accuracy.

The combination of circle ( ) and plus ( ) again showed the
best accuracy slightly outperforming the combinations triangle
( ) vs. asterisk ( ) and square ( ) vs. plus ( ). The choice
of the target again showed a strong effect, since the combina-
tion of plus ( ) as target and circle ( ) as distractor was one
of the worst combinations with only 56.7% of correct answers.
Compared to the two previous tasks, we found that the open and
closed categories seem to work really well for this task since the
seven best combinations are a combination of a closed shape as
target and an open shapes as distractor. As we used a large vari-
ance for both of the pointsets (target and distractor), this task
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Fig. 10. Accuracy while overlap increases for the experiments involving
the average task. We present logistic regression curves for a selected com-
binations of target and distractor shapes which overall showed good and
bad performance in terms of accuracy. Overlap was meassured using met-
ric Mpix .

involved less overlap when compared to the count task. How-
ever, we found that for this task essential the combination of
triangle ( ) and cross ( ) suffered from an increasing amount
of overlap. Figure 10 shows a comparison of some of the best
and worst combinations of shapes in terms of accuracy for this
task.

As with our previous experiments we again compared par-
ticipants’ accuracy between both of the used shape sizes and
found no significant difference (W = 5389.50, p = .3366).

8. Regression Model

To evaluate the proposed overlap metrics, and to investigate
how they can be used as a predictive variable on unseen scat-
terplots, we used a regression model to fit our data. Since the
outcome of correctness is binary and therefore limited to two
discrete values, we used a logistic regression model. Such a
logistic regression can be used to model the probability of a bi-
nary event (e.g. observers’ ability to solve a given task) based
on a set of given parameters (e.g. visual parameters of a stimu-
lus). The predictive performance of different models (based on
which parameters are used in the model) can then be compared
to find which set of parameters describes the data the best.

To compare the models we first defined a null model without
any predictive variables and subsequently added more predic-
tive variables (target shape, distracting shape, and other depen-
dent variables such as for instance amount of shapes). For each
of these predictive variables, we determined if they can improve
the predictive performance of our model by using the likelihood
ratio test. After we defined this model we then added each of
our metrics to this model and verified if they can further im-
prove the predictive performance, again by using the likelihood
ratio test. If the metrics improved the model, we then com-
pared which of the metrics improved the model the most. This
is done by comparing two models containing different metrics
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Fig. 11. Participants accuracy using different combinations of target and distractor shapes. Ordering is done based on accuracy over all experiments using
our three tasks. The left barchart shows a comparison of accuracy using all tasks, while the remaining show accuracy using this individual tasks. Green
bars show the combinations which showed the highest accuracy, while red bars show the combinations with the lowest accuracy.

through the Vuong’s Closeness test [30]. Thus, for each of our
tasks, we created a logistic regression model and evaluated the
relative predictive performance. Furthermore, we computed the
Akaike information criterion (AIC), to additionally argue about
the relative quality of our models.

Comparing Number of Shapes. As described before, we first
create a null model before subsequently adding variables of the
scatterplot to this null model. For the comparing number task,
these predictive variables are target shape, distracting shape,
and number of shapes. For both experiments we conducted us-
ing the number of shapes task, we found that these variables
could improve the predictive performances of the model sig-
nificantly with p < .001 for each of the variables. Using this
model we then applied our metric to investigate if our metrics
can be used as predictive variables. We found that all our met-
rics could improve the predictive performances of the model
significantly (p < .001) for both experiments. When adding
our metrics to the model we found that for Experiment 1 (us-
ing the big shapes), all of the metrics could improve the model
significantly (p < .001 for all models containing the different
metrics). However, for Experiment 2 we found a significant
increase in performances for Mrel (p = .04551), but not for
Mnum (p = .07758), Mpix (p = .06235), and Mshape(p = .6311).
Thus, for Experiment 1 all metrics could improve the model
significantly, and also no significant difference could be found
when comparing these models containing our metrics. This in-
dicates that for small amounts of overlap Mrel could describe
the data the best, while for larger amounts of overlap all met-
rics fit equally well.

Comparing Variance. Since the number of shapes is the
same for all the scatterplots, we used target shape, distracting
shape and variance as predictive variables for our base model
of this task. For our experiment using the big shapes, target,
as well as distracting shape, could improve the model signif-
icantly (p < .001). The same is true for the experiment us-
ing the small shapes, where target and distracting shape could
again significantly improve the model (p < .001). For the ex-
periment using the big shapes, however, using the variance as
a predictive variable could not improve the model (p = .797)
whereas for the small shapes using the variance could improve
the model significantly (p < .001). So for further investiga-
tions, if our metrics could also serve as a predictive variable, we
used a model with target shape, distractor shape and variance
for the experiment using the small shapes, and a model contain-
ing target and distractor shape for the experiment using the big
shapes. When further adding our metrics to these models, we
found that again all the metrics could improve the model signif-
icantly (p < .001). We then compared all the models with each
other using Vuong’s Closeness test and found no significant dif-
ference between the models for the experiment using the big
shapes. However, during analysis using AIC we found a bet-
ter fit of the model containing the shape overlap metric (AIC :
Mshape = 2570, Mrel = 2577, Mnum = 2579, Mpix = 2580).

When comparing the models using AIC, we found that for
this experiment, Mpix showed the best fit to the data (AIC :
Mshape = 3261, Mnum = 3266, Mrel = 3275, Mpix = 3264). By
futher comparing the models using Vuong’s Closeness Test, we
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also found significant effects for this better fit (Experiment 4:
Mshape > Mrel , p = .0023479).
Comparing Average. In our last task, the mean between the
sets was varied, therefore we added the mean as a predictive
variable besides target and distracting shape. For both of the
experiments, we found that these three variables could improve
the predictive performance of the model significantly (p < .001
for all variables in both experiments). We then again added our
metrics to the models and found that for Experiment 5 Mrel (p =

.0411), Mpix (p = .01221), and Mshape (p = 0.004627) could
significantly improve the model, while Mnum could not. When
comparing the model containing Mrel with Mpix, we found no
significant increase in performance, but a slight increase for the
AIC criteria (AIC : Mshape = 6477, Mnum = 6484, Mrel = 6481,
Mpix = 6479). For Experiment 6, none of our metrics could
improve the model significantly and the AIC values are almost
equal (AIC : Mshape = 5327, Mnum = 5327, Mrel = 5327, Mpix =

5326). We suppose this to happen, since the overall accuracy of
participants in this experiment was rather low, which results in
data that is difficult to predict for our regression model.
Combined Data from all Tasks. Since our goal is to find a
model that works for different tasks commonly used in scatter-
plot analysis, we then tried if our metrics can also be used as
a predictive variable for the complete data acquired in all our
experiments. We suspected this to be possible, since all task
parameters like amount of shapes, variance, shape sizes, and
mean can be used as predictive variables. Therefore, we cre-
ated models using all these variables and compared the models
as described earlier in this section.

Target shape, distracting shape, amount of points, variance
and mean showed a strong significant improvement to the
model (p < .001 for each of the variables), while size of shape
only showed a weak significant effect (p = .04914). When
adding our metrics to the model we found that Mshape and
Mpix could significantly improve the predictive performance of
the model (Mshape p < .001; Mnum p = .385603; Mrel p =

.373639; Mpix p = .026617, AIC : Mshape = 37250, Mnum =

37270, Mrel = 37270, Mpix = 37260), suggesting that this met-
ric serves as the best predictor for human perception. Also
when comparing Mshapeand Mpixusing Vuong’s Closeness test,
we found a significantly better fit in favour of Mshape p =

.0050261.

9. Implications for Scatterplot Design

Even though the choice of target and distractor shape is im-
portant when designing scatterplots, our findings indicate that
the overlap of shapes is also of great importance. Thus, while
previous work could show that there are visual differences be-
tween shapes and combinations thereof [11, 20, 10, 22], we
could show that overlap needs to be considered when trans-
ferring these findings to real world scatterplot scenarios. This
is especially relevant since our findings indicate that there are
combinations of shapes that suffer stronger from large amounts
of overlap than others. Figure 12 shows this effect of overlap
on the response accuracy for selected shapes. While there are
combinations such as the circle ( ) and plus ( ) symbol which
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Fig. 12. Logistic regression curve of participants accuracy while overlap in-
creases. This figure shows combined results taken from all our experiments
using three different tasks and two different shape sizes for each task. The
overlap was meassured using metric Mpix .

worked well for all tasks and overlap conditions, there are other
combinations such as for instance the triangle ( ) and the as-
terisk ( ), which seem to suffer severely from an increasing
amount of overlap. This finding is especially relevant because
both of these combinations combine closed target and open dis-
tractor shapes as suggested by Burlinson et al. [11]. Thus, while
we could, in general, confirm that their findings of open vs.
closed shapes also hold when incorporating overlap, our find-
ings show that some combinations are still not beneficial to be
used in practice.

Also, the given task seems to be an important factor when
comparing conditions where shapes overlap. The usage of the
asterisk ( ) shape as target seems to work well in combina-
tion with all other tested shapes as distractor for the variance
task (see Figure 1), indicating that the saliency of the aster-
isk seems to be an important factor especially when trying to
identify clusters. The combination of plus ( ) and asterisk ( )
shows a similar effect for the number of shapes task. While this
combination, in general, shows bad accuracies over all tasks
(see Figure 11), it shows especially bad results for the number
of shapes task and when overlap increases (see Figure 8). In-
vestigating the specific benefits or cost of the asterisk ( ) shape
remains future work.

Table 1 shows a comparison of all accuracies of all used
shapes as well as all our used tasks. While this table indicates
that the combination of closed target and open distractor shapes
seems to work well in general, the combination of asterisk ( )
and plus ( ) seems to be an interesting outlier, which works
well for all tasks.

9.1. Predicting Perception of Scatterplots

Since our findings suggest that overlap of shapes is an impor-
tant factor on human perception when perceiving scatterplots,
the amount of overlap appearing in a given scatterplot should
not be neglected when designing a scatterplot. To incorporate
overlap in the design process, a logistic regression model could
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be used to predict the readability of a scatterplot in the light of
expected overlap. For this prediction to be accurate however,
there is a need to determine all significant factors which influ-
ence the outcome of the prediction. We could show, that shape
overlap is one of those factors and that when taking overlap
into account, the predictive performance of a logistic regression
model significantly improves. To find weight factors for such a
predictive model, we would suggest using our pixel-based met-
ric, which improves the predictive performance the most. Thus,
by using these weight factors for overlap, used shapes, amount
of data points, variance, and other factors, optimal parameters
for a scatterplot visualization could be predicted through the re-
sulting equation. Such a equation could look like the equation
for the a logistic regression as follows:

p(x) =
1

e−(β0+β1+...+βy x) (1)

Where βx are weight factors for the scatterplot parameters
and p(x) is the possibility of an observer giving the correct an-
swer to a given question. Using appropriately chosen predictive
variables for β, the possibility of an intended answer by an ob-
server can be maximized and hence the scatterplot optimized.

However, for an optimal predictive performance of the
model, a larger amount of human labeled data is needed in or-
der to find accurate weight factors for the regression model.
Therefore, a larger number of different shape sizes, amounts
of shapes, and further tasks might be needed. Also, when using
more than two types of shapes, or even more complex tasks,
additional parameters are introduced which also need to be in-
vestigated. This however again requires a larger amount of re-
quired data, since the number of combinations for these differ-
ent parameters grows substantially. Thus, we see our findings
as an essential ingredient for a predictive scatterplot model, but
believe that more data is necessary to formulate such a model.
Findings. Even though we did limit our investigations to a
two-way comparison by using two different shapes together at a
time, we found some combination of shapes to appear to be less
prone to overlap than others. Thus, based on our findings, we
suggest for future multiclass scatterplot designs to use the fol-
lowing shape combinations: circle ( ) and cross ( ), circle ( )
and plus ( ), or triangle ( ) and plus ( ), as these combinations
showed the overall best performance in terms of accuracy over
all our experiments (see Figure 11). However, with an increas-
ing amount of overlap and especially for tasks involving the
perception of individual shapes, like in our number of shapes
task, even these combinations suffer from overlap. We there-
fore further suggest to generally minimize overlap by choos-
ing smaller shape sizes without jeopardizing shape readability.
This suggestion is supported by our finding that when compar-
ing different shape sizes, no significant effect of only shape size
on participants’ accuracy could be found.

10. Conclusion & Future Work

When exploring data using scatterplots, the ability to com-
pare the given classes depends on the given data. Similarity, for
example in distributions or increasing numbers of data points

Table 1. Comparison of all combinations of target and distractor shapes,
used in our experiments. A + symbol indicates that this combination re-
sulted in 80% or more correct answers for the given task, while a − symbol
indicates an accuracy of less than 60%. Combinations which showed high
accuracy for all task are marked in green, while combinations with low
accuracy are marked in red.

Target

Dist.

Task

− + + + Number
+ + + Variance
− − Average

+ + + Number
+ + Variance
+ Average

+ + + + + Number
+ + Variance

+ Average
− − − Number

+ + + − Variance
− − − Average

Number
+ + − Variance
− − Average

Number
+ + + + + Variance

Average

leads to an increasing degree of overlap which can obscure data.
This leads to a need for optimization of the draw parameters of a
given scatterplot to enable observers to explore the data. There-
fore, within this paper, we presented the results of a series of
crowd-sourced user studies that have been conducted to inves-
tigate the perceptual influence of overlap in two-dimensional
scatterplots.

While research suggests color as the most dominant visual
channel, recent work could show that using shapes to encode
can be a viable choice as well. In contrast to color, where
drawing-order is the most important factor in the ability to per-
ceive datapoints, the overlap between shapes introduces differ-
ent visual artifacts like artificial new shapes. Therefore, we
found that overlapping shapes can have a strong influence on
human perception of scatterplots and therefore need to be taken
into account. o measure this overlap we presented three dif-
ferent metrics and compared them using a logistic regression
model. While we found that in some cases even simple mea-
surements can be used as a predictive variable, our pixel precise
metric showed the overall best predictive performance.

While we could show that, in general, overlap influences the
ease of perception of scatterplots, we could also show that some
shape combinations are less prone to an increasing amount of
overlap. Furthermore, we could confirm previous work that
closed shapes show a good distinctiveness, especially when
used as target shape in combination with an open distractor
shape [11]. However, the asterisk shape is an interesting out-
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lier to this rule, when used as a target shape for example in the
variance task.

Using our metrics and having representative, human labeled
examples of scatterplots to be optimized, an automated ap-
proach could be implemented to enhance the distinctiveness
of the plot and hence improve human perception. While our
evaluations are limited since we only used two different types
of shapes at the same time, and a rather small amount of data
points, we could still show that the pixel-based metric could
serve as a valuable predictive variable for common tasks when
investigating scatterplots.

In the future, we would like to investigate if our metric can
be used to predict participants’ performance for more complex
scatterplots. These complex scatterplots could involve more
than two different shapes at a time in a single scatterplot. We
suspect that there is an additional interaction between certain
combinations of shape (for example when using shapes which
form another shape which also occures in the plot (for example
cross ( ), plus ( ), and asterisk ( )).

Using different colors also introduces additional complexity,
since the order of overdraw becomes relevant when compared
to drawing using only one color. Furthermore, we would like
to investigate if our findings can be extended to a larger amount
of data points, and prove if our findings can be interpolated for
example for different sizes of shapes between seven and fifteen
as used in our experiments.
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